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Foreword 

Bioinformatics is one of the youngest and most exciting fields in modern 
science. During the past decade, bioinformatics has become a 
challenging arena of applications of a wide variety of concepts and 
sophisticated techniques drawn from mathematics, computer science and 
probability theory. Within the fuzzy logic community, the meteoric 
ascent of bioinformatics has led to a contentious question:  Can fuzzy 
logic make a substantive contribution to advancement of bioinformatics?  
The pioneering work "Applications  of Fuzzy  Logic to Bioinformatics,"  
co-authored by  Professors Dong Xu, James Keller, Mihail Popescu and 
Dr. Rajkumar Bondugula,  may be viewed as a persuasive argument in 
support of an affirmative answer to the question. The core argument is 
that fuzzy logic is needed to solve problems in bioinformatics which are 
beyond the reach of existing techniques.  It should be noted that 
"Applications of Fuzzy Logic to Bioinformatics," is the first book on this 
subject.  

Today, fuzzy logic plays a relatively minor role in the 
armamentarium of bioinformatics.  A metric is the number of 
publications with "fuzzy" in title or abstract—publications which are 
listed in the PubMed database. The current rate is 300-400 papers per 
year. Will the same be true in a few years from now? My belief is  that in 
coming years there will be a rapid growth in the visibility and importance 
of fuzzy-logic-based techniques in the literature of bioinformatics and, 
more generally, in the literature of biological  and medical sciences.  
However, my belief is based not on a detailed familiarity with 
bioinformatics—a familiarity which I do not have—but on my 
understanding of what fuzzy logic has to offer.  



 Applications of Fuzzy Logic in Bioinformatics viii 

There are many misconceptions about fuzzy logic. Fuzzy logic is not 
fuzzy. Basically, fuzzy logic is a precise logic of imprecision. The 
principal objective of fuzzy logic is formalization/mechanization of 
imprecision, uncertainty, incompleteness of information and partiality of 
truth. Bioinformatics data fit this description, in addition to having a 
huge mass and high dimensionality. 

Science deals not with reality but with models of reality. 
Concomitantly, scientific progress is driven by a quest for better models 
of reality. In bioinformatics, modeling is focused on genes, genomes and 
related biological entities. Brilliant successes have been achieved 
through the use of models based on bivalent logic and probability theory. 
However, there are many problems, such as those discussed in 
"Applications of Fuzzy Logic to Bioinformatics," in which better results 
can be achieved with better models based on the use of fuzzy logic. What 
is widely unrecognized is that modeling techniques  based on bivalent 
logic and probability theory are intrinsically less powerful than 
techniques which are based on fuzzy logic and fuzzy-logic-based 
probability theory. An important contribution of "Applications of Fuzzy 
Logic to Bioinformatics" is making the bioinformatics community aware 
of the powerful modeling capability of fuzzy logic.  

The superior capability of fuzzy logic as a modeling language is one 
of the principal rationales for its use in bioinformatics and, more 
generally, in scientific theories. An elaboration of this assertion is in 
order. 

In a general setting, let M(S) be a model of S. There are two basic 
metrics which might be associated with M(S). First, the goodness of 
M(S) as a model of S, call it cointension; and second, the computational 
complexity of M(S). In general, cointension and computational 
complexity are covariant in the sense that an increase in cointension of 
M(S) results in an increase in the computational complexity of M(S). 
Bivalent logic and probability theory are, respectively, special cases of 
fuzzy logic and fuzzy-logic-based probability theory. What this implies 
is that, viewed as a modeling language, bivalent logic and probability 
theory have an intrinsically lower power of cointension than fuzzy logic 
and fuzzy-logic-based probability theory. However, the reverse is true so 
far as computational complexity is concerned. What gives fuzzy logic an 
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advantage is that an increase in the computational complexity is far less 
important than an increase in cointension. This, in principle, is one of the 
main rationales for the use of fuzzy logic in bioinformatics. It should be 
noted that the relation between bivalent logic and fuzzy logic is similar in 
spirit to the relation between linear system theory and nonlinear system 
theory. 

"Applications of Fuzzy Logic to Bioinformatics," serves three major 
purposes. First, it introduces fuzzy logic to the bioinformatics 
community. Second, it introduces bioinformatics to the fuzzy logic 
community; and third, it demonstrates that fuzzy logic has much to 
contribute to the advancement of bioinformatics. Professors James 
Keller, Dong Xu, Mihail Popescu and Dr. Rajkumar Bondugula, and the 
Imperial College Press deserve our thanks and congratulations for 
producing a work whose importance is hard to exaggerate.  They deserve 
a loud applause. 

 
   
Lotfi A. Zadeh 
Berkeley, CA 
September 24, 2007 
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Preface 

Science is entering a new era thanks to the Human Genome Project, one 
of the largest programs in molecular biology.  This project was devoted 
to the sequencing of human DNA fragments, i.e., to the determination of 
the order of nucleic acids therein. These sequences represent the 
blueprint of life. Since the 1980s, the advent of the Human Genome 
Project and other DNA sequencing projects has led to exponential 
growth in molecular data.  Genomic sequencing has opened a new 
avenue to study biological systems on large scales, paving the way for 
investigating other high-throughput data. Today, due to the availability 
of high-throughput measurement technologies, it is possible to use a 
broad range of experimental data to expand the genome-scale studies 
from biological sequences and protein structures to higher-level 
functions and phenotypes.  For example, microarray technology is a 
powerful tool to systematically measure gene expression across whole 
cells and tissues under varying experimental conditions or over a time 
course. As massive data are being generated, there is a strong demand for 
bioinformatics in data management, visualization, integration, analysis, 
modeling, and prediction. Bioinformatics has been developed extremely 
fast and has brought enormous impact to the research of biology and 
medicine in recent years. Thousands of bioinformatics databases and 
tools have been developed. More and more experimental biologists have 
realized the importance of bioinformatics, as the need for managing and 
analyzing the massive amount of data is evident. Many biologists now 
use bioinformatics tools themselves, especially through a Web interface.  

As massive biological data have become a fundamentally important 
resource in biomedical sciences, researchers have developed various 
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bioinformatics algorithms and software tools to identify meaningful 
information (or statistically significant patterns) from data and correlate 
such information for discovery of new knowledge or prediction of 
biological properties. However, such tasks are often highly challenging. 
The information-rich data are heterogeneous and ambiguous in nature. 
They are often noisy and incomplete, as well as containing misleading 
outliers.  Furthermore, biological systems, due to adaptability, evolution, 
redundancy, robustness, and emergence, are extremely complex. The 
challenge has drawn a wide range of studies from computer sciences, and 
various computer science technologies have been applied. The most 
notable applications include dynamic programming, neural networks, 
hidden Markov models, support vector machines, etc. Fuzzy set theory 
and fuzzy logic have also been used in bioinformatics, and we believe 
there is a much greater potential for their applications in bioinformatics 
in the future.  
 

 
Figure 0.1. Number of publications containing the word “fuzzy” in their PubMed records 
since 1980. 
 

Many biological systems and objects are intrinsically fuzzy as their 
properties and behaviors contain randomness or uncertainty. In addition, 
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it has been shown that exact or optimal methods have significant 
limitations in many bioinformatics problems.  Fuzzy set theory and fuzzy 
logic are ideal to describe some biological systems/objects and provide 
good tools for many bioinformatics problems. The applications of fuzzy 
concepts and approaches have been growing at an exponential rate. 
Figure 0.1 illustrates the number of publications that contain the word 
“fuzzy” in their titles or abstracts in PubMed, a literature database mainly 
for biomedical research. Currently the number is increasing at a rate of 
about one publication per day. While a number of books have been 
published covering applications of other computational intelligence 
techniques in bioinformatics, no book addresses the applications of fuzzy 
set theory and fuzzy logic in bioinformatics. As researchers in this area 
and educators at a university, we feel that there is an urgent need for a 
comprehensive and systematic book covering this topic. Hence, this is 
our motivation in writing this book. 

We developed the text in a way that is useful to a broad readership, 
including students, postdoctoral fellows, and senior investigators moving 
into the field, as well as professional practitioners/bioinformatics experts. 
We expect that the book can be used as a textbook for upper 
undergraduate-level or graduate-level bioinformatics courses. 
Bioinformatics applications using fuzzy set theory or fuzzy logic often 
require good understanding of the biological background and the 
computational algorithms. In our case, no prerequisite in biology is 
needed, and only college-level calculus is required, for reading this book. 
In other words, a dedicated reader with a college degree in 
computational, biological or physical science should be able to follow 
the book without much difficulty. To facilitate learning and to maximize 
the benefit of the book, we provide a comprehensive introduction in 
fuzzy set theory and an appendix in basic biological concepts. We also 
wish to promote more research in applying fuzzy approaches in 
bioinformatics through this book, especially to provide an informative 
source for beginners entering bioinformatics as young students or as 
experienced researchers coming from other disciplines. 

In this book, we discuss why and how fuzzy concepts and methods 
can play an important role in studying biological problems. We have 
designed the chapters to comprehensively address several important 
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bioinformatics topics using fuzzy concepts and approaches.  In addition, 
chapters have been connected seamlessly through a systematic design of 
the overall structure of the book.  We start with an introduction to 
bioinformatics and then introduce fundamentals of fuzzy set theory and 
fuzzy logic. We focus on three examples (measurement of ontological 
similarity, protein structure prediction/analysis, and microarray data 
analysis).  We also review other bioinformatics applications using fuzzy 
techniques. Finally we summarize and provide a future outlook. 
Furthermore we provide two appendices, one on fundamental biological 
concepts and one on online resources related to the book. 
 

Chapter 1 (Introduction to Bioinformatics) discusses the scope of 
bioinformatics, including biological sequence analysis, protein structure 
analysis and prediction, gene expression data analysis, computational 
proteomics, gene ontology and biological pathway prediction. We will 
illustrate what the challenges in the fields are and why fuzzy logic can 
help.  

Chapter 2 (Introduction to Fuzzy Set Theory and Fuzzy Logic) 
introduces fuzzy set theory and fuzzy logic. We will review the history 
of the field (together with types of successful applications). We will 
explain the key concepts and major methods, including fuzzy 
memberships, fuzzy clustering, fuzzy inference, etc. (tailored to potential 
bioinformatics applications).   

Chapter 3 (Fuzzy Similarities in Ontologies) reviews some of the 
measures that can be used to compute the similarity between gene 
products annotated with terms from an ontology.  We will introduce new 
fuzzy measures for computing ontological similarity between genes that 
avoid the problems of the traditional measures and, in addition, can 
account for information uncertainty.  We will present several 
applications of the fuzzy similarity measures such as gene clustering and 
gene function summarization using the Gene Ontology terms.  At the end 
of the chapter, we will present the application of the ontological 
similarity to computational intelligence algorithms such as fuzzy rule 
systems. 

Chapter 4 (Fuzzy Logic in Structural Bioinformatics) introduces 
application of fuzzy logic in protein secondary structure prediction, 
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protein solvent accessibility prediction, and protein structure 
comparison/classification. We will show our computational results and 
describe related computational tools. 

Chapter 5 (Application of Fuzzy Logic in Microarray Data Analyses) 
provides a review of several microarray processing algorithms for gene 
selection and patient classification.  We will then describe several 
clustering algorithms such as fuzzy c-means, relational fuzzy c-means 
and fuzzy co-clustering, and their use for gene selection. 

Chapter 6 (Other Applications) reviews other types of bioinformatics 
applications using fuzzy set theory and fuzzy logic in the literature, 
including biological sequence motif identification, protein sequence 
alignment, protein subcellular localization prediction, 3D protein 
structure comparison, and computational proteomics. 

Chapter 7 (Summary and Outlook) summarizes the whole book. We 
will discuss the advantages and limitations of using fuzzy set theory and 
fuzzy logic in bioinformatics. We will also provide an outlook of future 
applications and directions in using the fuzzy concept in molecular 
biology. Further related readings will be suggested. 

Appendix I (Fundamental Biological Concepts) introduces some 
fundamental biological concepts for readers without a biological 
background. We will cover major biological subjects discussed in the 
book.  
 Appendix II (Online Resources) describes some of the free online 
resources, including tools, databases, and tutorials related to molecular 
biology, bioinformatics, and fuzzy set theory.   

During the writing of this book, we have received help and support 
from our friends, colleagues, and families, to whom we wish to take this 
opportunity to express our deep gratitude and appreciation. First we 
would like to thank Imperial College Press, who contacted us to start this 
book project. During the writing of this book, Ms. Lenore Betts and Ms. 
Katie Lydon, editors at Imperial College Press, answered many of our 
questions and we are grateful their help. We like to thank Gerald L. 
Arthur, Tim Havens, Tran Hong Nha Nguyen, Yangjiong Su, Anders 
Wallqvist, and Jingfen Zhang for critically reviewing the drafts of the 
book and providing many helpful suggestions. We also want to thank our 
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families for their constant support and encouragement over about a year 
of intensive writing. 

 
      Dong Xu 

James Keller 

Mihail Popescu 

Rajkumar Bondugula 
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Chapter 1 

 Introduction to Bioinformatics  

1.1 What Is Bioinformatics 

As we enter the information age, we witness the impact of computers and 
computation in almost every corner of our lives. Many people in the 
world retrieve and broadcast information through the Internet. The 
weather forecast is made through extensive computation on 
supercomputers. Stocks are traded electronically. Airplanes are designed 
completely on computers before the first component is ever 
manufactured. We also witness substantial impact of computers and 
computation on biological and medical research, and this impact led to 
the birth of bioinformatics. 

Although bioinformatics is a popular term in science and technology, 
there is no consensus for its definition. As a new field, its precise 
definition will take many years to finalize. A current semi-official 
definition for bioinformatics by the US National Institutes of Health 
(NIH) is “Research, development, or application of computational tools 
and approaches for expanding the use of biological, medical, behavioral 
or health data, including those to acquire, represent, describe, store, 
analyze, or visualize such data” (http://www.bisti.nih.gov/).  A related 
field, computational biology, is defined by NIH as “the development and 
application of data-analytical and theoretical methods, mathematical 
modeling and computational simulation techniques to the study of 
biological, behavioral, and social systems”. From these definitions, 
bioinformatics is focused on technology (engineering) for developing 
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tools and infrastructure, while computational biology is more about 
science (biology) to generate hypotheses in understanding nature. 

Although the distinction between bioinformatics and computational 
biology is made by NIH and others, there is no doubt that the two fields 
are tightly coupled. Hence, the terms bioinformatics and computational 
biology are sometimes used interchangeably. For example, the definition 
of bioinformatics by Luscombe et al. [2001] includes some scope of 
computational biology specified by NIH, but restricts itself to the 
biomolecular aspect: “bioinformatics is conceptualizing biology in terms 
of macromolecules (in the sense of physical-chemistry) and then 
applying "informatics" techniques (derived from disciplines such as 
applied math, computer science, and statistics) to understand and 
organize the information associated with these molecules, on a large-
scale.”  

Bioinformatics is deeply rooted in three traditional disciplines, i.e., 
biology, computer science, and statistics. Both biology and computer 
science often claim bioinformatics as a sub-discipline. Furthermore, 
bioinformatics has strong ties to physics, biophysics, mathematics, 
chemistry, and engineering. On the other hand, bioinformatics is 
becoming an independent discipline by itself, with its own theoretical 
foundations, analytical approaches, and computational techniques. This 
emergence is similar to biophysics, which evolved from an 
interdisciplinary field between biology and physics to an integral science. 

 1.2 A Brief History of Bioinformatics 

Although bioinformatics is a new term developed in the early 1990s, 
bioinformatics research started before 1970. Over the past four decades, 
bioinformatics emerged gradually from a hardly noticeable area to a 
mainstream discipline in science. You can find a comprehensive 
historical perspective of bioinformatics in the review by Ouzounis and 
Valencia [2003]. Here, we highlight some major milestones that define 
today’s bioinformatics. If you are unfamiliar with some of the biological 
terms, you can find related materials in Appendices I and II. 
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In the 1960s, a number of key contributions in investigating 
biomolecular evolution paved the way for applying computers in 
studying biological sequences. Zuckerkandl and Pauling [1965] 
pioneered the use of biological sequences in evolutionary studies, which 
laid the theoretical foundation for computational studies of evolutionary 
patterns in genes and proteins. Fitch and Margoliash [1967] developed 
computational methods to build a tree structure (called “phylogenetic 
tree”) from gene sequences for understanding gene evolution. Margaret 
Dayhoff and her coworkers developed a scoring method (called a 
“mutation matrix”) for comparing protein sequences, and created 
computerized protein sequence databases for biomolecular evolution 
[Dayhoff et al., 1965]. Because of her contribution, Dayhoff is regarded 
as a founder of the field of bioinformatics.  

In the 1970s, a series of theoretical and computational studies opened 
new doors for bioinformatics research in diverse biological problems. 
Needleman and Wunsch [1970] published the first efficient algorithm for 
comparing two biological sequences based on dynamic programming. 
Lee and Richards [1971] provided a method for computing the geometry 
of protein three-dimensional structure. Chou and Fasman [1974] 
proposed a method for predicting protein secondary structures from a 
protein sequence. A few laboratories started simulation of protein 
dynamics and protein folding processes [Levitt and Warshel, 1975; 
Tanaka and Scheraga, 1975; Karplus and Weaver, 1976; Hagler and 
Honig, 1978]. Furthermore, RNA structure predictions emerged [Tinoco 
et al., 1971; Waterman and Smith, 1978]. 

In the 1980s, various bioinformatics algorithms were significantly 
improved and bioinformatics tools became more sophisticated. In 1981, 
the Smith-Waterman algorithm for aligning two biological sequences 
was published [Smith and Waterman, 1981]. Although this algorithm is 
based on the one by Needleman and Wunsch [1970], the improvement 
allowed a comparison between parts of one sequence and parts of 
another sequence (which is called “local alignment”).  This paved the 
way for large-scale sequence comparison and search. Because of this 
development and other contributions, Michael Waterman is regarded as 
another founder of bioinformatics.  FASTA [Lipman and Pearson, 1985] 
was an early program for fast sequence similarity search in a database. 
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Feng and Doolittle [1987] developed a successful method to compare a 
group of sequences simultaneously (which is termed as “multiple-
sequence alignment”). A number of systematic approaches for building 
phylogenetic trees were published, among which PHYLIP [Felsenstein, 
1989] became a popular package. Kuntz et al. [1982] pioneered a method 
for predicting protein-ligand docking conformation. Computational 
methods for predicting genes from a DNA sequence were proposed 
[Shepherd, 1981; Fickett, 1982; Staden and McLachlan, 1982].  With 
these developments, the importance of bioinformatics research was 
recognized. Particularly, in 1988, the National Center for Biotechnology 
Information (NCBI) in the US was created to handle various 
bioinformatics issues from data distribution to data analysis. 

The golden age of bioinformatics started in 1990s. This boom was 
mainly due to the Human Genome Project, which officially started in 
1990. The goal of this project was to determine the sequence of the entire 
human genome. Genomic sequencing has opened a new avenue to study 
biological systems on large scales, setting the stage for generating many 
other high-throughput data.  The new techniques for studying biology in 
large scale raised various new challenges for bioinformatics. Phil Green 
and his colleagues addressed the computational problem of identifying 
nucleotides from image data of a sequencer, a process referred to as 
“base calling” [Ewing et al., 1998]. A widely used method for genome 
sequencing is the "shotgun" approach, where bioinformatics is required 
to assemble short, overlapping pieces of DNA sequences into a long, 
coherent sequence. Green [2002] and Myers [1995] developed methods 
for solving this problem, which was a major contribution to the Human 
Genome Project.   

In 1990, the exponential growth of biomolecular data clearly showed 
the need for interpreting, managing and mining these data. Various 
bioinformatics databases, such as GenBank 
(http://www.ncbi.nlm.nih.gov/Genbank), a database for biological 
sequences, became essential to biomedical research. Many 
bioinformatics algorithms led to sophisticated computer packages, with 
user-friendly interfaces. Meanwhile, computers became faster and 
cheaper and the Internet provided a major platform for accessing 
bioinformatics tools and databases. Many experimental biologists started 
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to use various bioinformatics packages, especially through Web 
interfaces [Xu et al., 2000; Rhee et al., 2006]. A number of popular 
software packages and servers developed in the 1990s are widely used, 
as indicated by their large numbers of citations (see Table 1.1). The 
sequence comparison tool BLAST [Altschul et al., 1990] became a 
household name to biologists. It is also the most popular tool among all 
the computational tools that have ever been developed since the birth of 
the computer, with its defining paper as the most cited reference in the 
scientific history. The widespread use of bioinformatics applications has 
had an enormous impact on research in biology and medicine.  

 
 

Table 1.1. Popular Bioinformatics Packages 
 
Name Functionality URL Reference Citations 
BLAST Pairwise sequence 

alignment 
http://www.ncbi.nlm.nih
.gov/BLAST/ 

Altschul et al., 
1990 

20,495 

CLUSTAL-W Multiple sequence 
alignment 

http://www.ebi.ac.uk/cl
ustalw/ 

Thompson et 
al., 1994 

18,837   

SignalP Signal peptide 
prediction 

http://www.cbs.dtu.dk/s
ervices/SignalP/ 

Nielsen et al., 
1997 

3002 

DALI  Protein structure 
comparison 

http://www.ebi.ac.uk/da
li/ 

Holm and 
Sander, 1993 

g 

MODELLER Protein tertiary 
structure prediction 

http://www.salilab.org/
modeller/ 

Sali and 
Blundell, 1993 

1817 

PHD Protein secondary 
structure prediction 

http://www.predictprote
in.org/ 

Rost and 
Sander, 1993 

1795 

SEQUEST Protein identification 
using mass-spec data  

http://fields.scripps.edu/
sequest 

Eng et al., 
1994 

1324 

MFOLD RNA secondary 
structure prediction 

http://www.bioinfo.rpi.e
du/applications/mfold/ 

Mathews et 
al., 1999 

1228 

PHRED DNA sequencing http://www.phrap.org/ Ewing et al., 
1998 

1162 

GENESCAN Gene identification in 
DNA 

http://genes.mit.edu/GE
NSCAN.html 

Burge and 
Karlin, 1997 

1139 

Note: The number of journal citations was based on the “ISI Web of Knowledge” 
(http://nadc.isiknowledge.com) on August 4, 2006. 

 
Coming into the new millennium, bioinformatics became a very 

active research field as modern biology quickly evolves. The availability 
of genomic sequences enabled a number of new high-throughput 
measurement technologies, which expanded genome-scale studies from 
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sequence-level information to higher-level functions.  For example, 
microarrays are powerful tools for systematic measurement of large-scale 
gene-expression data under varying experimental conditions or over a 
time course. Various experimental methods can generate different types 
of protein-protein interaction information [Chen and Xu, 2003]. Each 
new experimental technique for large-scale biomolecular measurement 
often requires new development in data interpretation and analysis. In 
microarrays, extensive studies have been conducted in image processing, 
statistical analysis, and clustering [Speed, 2003]. In recent years, new 
sequencing techniques [Service, 2006], such as the 454 sequencer 
[Margulies et al., 2005], were developed to reduce the cost of 
sequencing. The bioinformatics challenges in these sequencing 
technologies are numerous in terms of experimental design, data 
interpretation, and data integration. 

In recent years, systems biology emerged as a field which integrates 
experimental, theoretical, and computational techniques to study 
biological organisms at multiple levels as a system instead of individual 
components [Alon, 2006]. A systems approach brings renewed hope for 
solving some long-standing biomedical problems, especially various 
complicated diseases such as cancer and diabetes. Bioinformatics is a 
key component in systems biology, bringing heterogeneous data together 
for analysis, modeling and design [Kriete and Eils, 2005]. For example, 
bioinformatics can be used to predict a biomolecular network as a large-
scale system [Palsson, 2006]. In addition, it also helps to fuse and 
integrate a wide spectrum of high-throughput data, including biological 
sequences, gene expression levels, protein interactions, small RNA 
regulation [Washietl et al,. 2005], epigenomics data [Model et al., 2001], 
and metabolomic data [Steuer et al., 2003]. 
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Figure 1.1 Our view of the scope of bioinformatics and related areas in a matrix of 
biological objects and computational approaches. 
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1.3 Scope of Bioinformatics 

Regardless of its definition, the scope of bioinformatics is extremely 
broad and is rapidly changing, particularly in recent years. Although 
bioinformatics theoretically could address all bio-related issues, the 
current scope of bioinformatics is mainly at the biomolecular level (see 
Figure 1.1), particularly on macromolecules (DNA, RNA, and proteins), 
biological complexes/modules involving a group of genes/proteins, and 
biomolecular networks/pathways that control various interactions among 
genes/proteins. The roles of bioinformatics in modern biology are 
summarized in Figure 1.2. More specifically, bioinformatics targets the 
following major computational issues and methods: 

1) Data interpretation in high-throughput technologies 

Various high-throughput technologies became the driving force of 
modern biology. These technologies include sequencers for DNA 
sequencing, mass spectrometers for protein identification, microarrays 
for gene expression profiling, etc. Typically, the initial outputs of these 
technologies are images and spectra, which are often huge in size and 
noisy in data quality.  Computational methods are required to process 
these data; thus, bioinformatics plays an important role to automate the 
interpretation of the images and spectra and to convert them into 
numerical values. 
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2) Data management and computational infrastructure 

Given the size and complexity of biological data, creation and 
maintenance of databases of biological information are essential to 
modern biology. Biological sequences and their annotations comprise the 
majority of such databases, while many other types of databases for 
microarray gene expression, protein structures, etc. are expanding 
quickly. Bioinformatics handles the design of these databases for data 
storage, update, and retrieval. In many cases, a Web interface is provided 
for data access, together with some back-end engines for data analyses 
(see Appendix II for examples). Sometimes graphical tools or plug-ins 
are provided for data visualization. Furthermore, some biological 
databases may connect to experimental instruments for real-time data 
collection using a tracking system, such as a Laboratory Information 
Management Systems (LIMS) [Paszko and Turner, 2001]. 
 
 

 
 
Figure 1.2 Roles of bioinformatics in modern biology. 
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3) Discovery from data mining 

A demanding task for bioinformatics is to extract useful biological 
information and patterns from noisy data produced by high-throughput 
technologies. For example, one can compare sequences of multiple 
genomes to identify interesting evolutionary patterns. Analyzing 
microarray data can lead to the discovery of the genes that are associated 
with a particular disease. Mining biomedical literature can lead to 
automated identification of possible gene-gene associations.  We will 
address microarray data mining extensively in Chapter 5 of this book. 

4) Prediction  

Bioinformatics is often used to predict biological information. In 
particular, from a protein sequence alone, one can predict protein 
secondary structure, protein localization (in a compartment of a cell), 
protein function, etc. We will discuss protein secondary structure 
prediction in detail in Chapter 4 of this book. Data mining techniques can 
be applied in bioinformatics predictions. For example, in protein 
structure prediction, one can mine known protein structures with similar 
protein sequences to a query protein and then construct a structural 
model based on the known structures, in a process called “homology 
modeling” [Sali and Blundell, 1993]. Bioinformatics prediction is 
becoming an integral part of modern biology through an iterative process 
of hypothesis generation and experimental validation. 

5) Computational design 

Bioinformatics is widely used as a design tool in medicine and 
bioengineering. One can use bioinformatics in protein structure-based or 
gene-based drug discovery and development. It can help design a 
delivery using a certain combination of drugs and at a certain schedule to 
achieve maximum performance (e.g., for AIDS treatment). It can also 
suggest mutations of a gene for achieving certain biological properties in 
a genetically modified species. For example, it is possible to suggest a 
mutation of a gene to achieve drought resistance in soybeans.  
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6) Modeling 

Modeling of biological systems and processes often adds value to the 
available biological data. A well established area in bioinformatics is 
protein structure modeling [Xu et al., 2006]. One can model various 
aspects of a protein structure, including geometry, energetics, and 
dynamics. For example, a useful modeling technique [Nicholls et al., 
1991] calculates and visualizes the electrostatic field of a protein 
structure. One can also model a neural system using differential 
equations, with parameters fitting some experimental data. In many 
cases, these parameters cannot be measured directly. Modeling can be 
used to interpret experimental results and to generate new hypotheses. In 
recent years, an entire cell has been modeled. For example, E-Cell 
(http://www.e-cell.org/) attempts to model and reconstruct biological 
phenomena computationally and perform whole cell simulations. 

As bioinformatics expands its scope, a number of areas emerge as 
sub-disciplines. Each of the sub-disciplines has its own special methods 
and techniques. Structural bioinformatics focuses on the computational 
analysis and prediction of macromolecular structure (especially protein 
structure).  Computational proteomics handles management and analysis 
of proteomics data for protein identification and protein interaction 
determination. Computational systems biology addresses algorithm and 
application development for systems biology. On the application side, 
sub-disciplines focus on the application of bioinformatics in different 
biological subjects. For example, immunoinformatics models 
immunological components for better understanding immune functions. 
Pharmacoinformatics deals with drug discovery using bioinformatics 
approaches. Agroinformatics (agricultural informatics) specializes in the 
bioinformatics that deals with plants and domestic animals. 

In addition to expansion in various sub-disciplines, there are 
overarching issues for bioinformatics. One of them is bioinformatics 
standards. As almost all the analyses in bioinformatics are large scale, 
automated processing without extensive manual interruption is essential. 
For different tools and databases to communicate with each other, some 
standards need to be established. One of the efforts is ontology, which is 
a set of controlled vocabularies. We will have a thorough discussion of 
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ontologies in Chapter 3. An infrastructure to facilitate interactions 
between databases and servers is the semantic web, which creates a 
universal mechanism for information exchange and reuse in a machine-
interpretable way across application, organization, and community 
boundaries [Neumann, 2005].  

Bioinformatics has a number of related fields (in addition to 
computational biology), as illustrated in Figure 1.1. At the small 
molecule level, cheminformatics applies information technology in 
identification and optimization of drug leads, while computational 
chemistry employs quantitative methods for calculating molecular 
properties or simulating molecular behavior.  At the macroscopic scale, 
health informatics (or medical informatics) addresses computational 
development for improving communication, understanding and 
management of medical information and practice; biostatistics applies 
statistical techniques in health-related fields, such as medicine, biology, 
and public health; and mathematical biology (or biomathematics) uses 
theoretical and numerical methods and tools to model biological systems 
and processes. The areas shown in Figure 1.1 overlap with each other 
and their scopes have been historically defined, although different 
researchers have different views. Among all the areas, a unique hallmark 
of bioinformatics is its emphasis on the development of computational 
tools and infrastructures driven by the need of users instead of the 
developers. 
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1.4 Major Challenges in Bioinformatics 

As massive biological data have become a fundamentally important 
resource during discovery of new biological knowledge, a key task for 
bioinformatics is to identify meaningful information (or statistically 
significant patterns) from data and correlate such information with 
biological knowledge. However, such a task is highly challenging in 
many cases: (1) the data size is large with high dimensionality, with a 
complexity much higher than those typically handled by traditional 
computational sciences; (2) the information-rich data are heterogeneous 
in nature, noisy, and incomplete, as well as containing misleading 
outliers; and (3) biological systems, due to adaptability, evolution, 
redundancy, robustness, and emergence, are extremely complex. Many 
biological data are generated by biological processes which are not well 
understood. Interpretation of such data requires discovery of convoluted 
relationships hidden in the data. Due to these challenges, the accuracy of 
prediction or the information mined from a database is often not 
satisfactory. It is clear that there is much room for further improvement 
and development, which require novel theoretical frameworks and 
computational techniques. 

Other than the technical challenges, human factors are also important. 
Given the scope of bioinformatics, it is unlikely for a single person to 
have deep understanding in relevant fields of computer science, biology, 
and statistics. Inevitably a researcher may not have a complete view or 
knowledge to solve a particular problem. In most cases collaborations are 
needed. However, overcoming “language” barriers among researchers 
from different backgrounds is often demanding. Currently, a majority of 
experimental biologists are not familiar with concepts, methods and tools 
available or emerging in bioinformatics. Computational researchers often 
do not understand biology in depth. More communication among 
different disciplines is essential for bioinformatics research.  
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1.5 Bioinformatics and Computer Science 

The challenges in bioinformatics have resulted in a wide range of studies 
from computer sciences. Almost all available computer science 
techniques have been applied in bioinformatics. The following are some 
most notable applications of computational and statistical methods in 
bioinformatics:  
 

1) Dynamic programming 
2) Neural networks 
3) Hidden Markov Models 
4) Hypothesis test 
5) Bayesian statistics 
6) Clustering 
7) Sampling search (Gibbs, Monte Carlo, etc) 
8) Maximum likelihood methods 
9) Information theory 
10) Support Vector Machines 

 
Fuzzy set theory has been used in bioinformatics, but to a much less 

extent than any of the methods above. We believe there is much higher 
potential for fuzzy set theory in bioinformatics, and hence, the focus of 
this book. 

Not only does computer science provide techniques for 
bioinformatics, bioinformatics is also a new driver of computer science. 
Better hardware (supercomputers) is often demanded by bioinformatics 
applications. New data representation and new algorithm development 
fuel active research in computer science. Bioinformatics may also inspire 
new theoretical frameworks for computer science. Traditionally, a 
number of computational techniques came from biological concepts, 
such as neural networks, genetic algorithms, automata, and fuzzy set 
theory. In recent years, DNA computing is being developed to use DNA 
and biochemical reactions, instead of the traditional silicon-based 
computer chips to solve computational problems [Adleman, 2004]. Ant 
colony optimization mimics the behavior of ants in finding paths from 
the colony to food and uses a probabilistic technique for solving 
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computational problems [Dorigo and Stützle, 2004]. Meanwhile particle 
swarm optimization [Eberhurt and Kennedy, 1995] imitates social 
communication (say, among insects) to produce cooperation in groups of 
potential solutions in hunting for very good answers to highly complex 
problems. More computer science techniques will be developed with the 
research of bioinformatics. 

If the reader wishes to know more about bioinformatics, we suggest 
some related books for reference [Jiang et al., 2002; Claverie, 2003; 
Jones and Pevzner, 2004; Lesk, 2005] and review articles [Luscombe et 
al., 2001; Ouzounis and Valencia, 2003; Kanehisa and Bork, 2003; 
Bonetta, 2004; Rhee et al., 2006], as well as the Internet resources listed 
in Appendix II. 
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Chapter 2 

Introduction to Fuzzy Set Theory 
 and Fuzzy Logic 

2.1 Where Does Fuzzy Logic Fit in Computational Science? 

There are many computational models and approaches that can be 
applied to bioinformatics problems.  These fields of study can be 
aggregated under the general heading of computational science.  Our 
view of one possible categorization of the various disciplines within 
computational science is shown in Figure 2.1. We believe that the ever 
expanding group of disciplines covered by computational intelligence 
(neural networks, fuzzy systems, evolutionary computation, swarm 
intelligence, autonomous mental development, etc.) occupies a central 
place in that taxonomy. These are all paradigms that take inspiration 
from biological properties and animal or human characteristics and 
intelligence to create computing models.  While all approaches from 
computational intelligence have a significant role in bioinformatics, we 
argue that the very nature of biology, and in particular, producing 
automated reasoning algorithms about biology, cries out for the use of 
fuzzy set theory and fuzzy logic.  This book is our attempt to 
demonstrate the richness of design that can be realized through fuzzy set 
models in bioinformatics. 
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Figure 2.1 Our view of the central role of computational intelligence within the general 
field of computational science. 

2.2 Why Do We Need to Use Fuzziness in Biology? 

Throughout the history of science, there has always been a need to model 
and manage uncertainty in the physical world.  This is particularly true in 
biology in general, and more recently, bioinformatics.  The variability 
exhibited in nature in studying the genome and its relationship with 
phenotypical behavior require theoretical and computational models to 
be flexible enough to capture the essential aspects without “seeing” every 
deviation as something completely new.  The historical framework for 
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dealing with uncertainty has been probability theory.  This is a powerful 
tool that has served science well in modeling situations where the 
primary source of uncertainty is randomness.  In some instances, 
uncertainty takes other forms.  In considering a new gene sequence, it 
may be important to know how similar it is to a particular sequence – if it 
is very similar, it probably has the same function, if it is less similar, it 
may produce a different effect.  It is not so much a question of “whether 
or not” the two genes are the same, as it is a question of “how much” this 
particular instance of the new gene resembles a prototype.  Other sources 
of uncertainty that need to be considered include incompleteness in the 
data extracted from actual samples, lack of expressiveness or faithfulness 
of some features that we extract, lack of clear boundaries between classes 
of proteins, proteins that are members of more than one class, etc.  In 
these situations, alternate methodologies should be utilized to aid us in 
making automated evaluations.  Fuzzy set theory and fuzzy logic provide 
a different way to view the problem of modeling uncertainty and offer a 
wide range of computational tools to aid decision making. Clearly, it is 
not our intention to diminish the vital role of probabilistic models 
making in science generally and bioinformatics in particular. Fuzzy set 
theory and fuzzy logic provide complementary information to that which 
comes from a probabilistic view. 

Almost all bioinformatics problems to date are formulated in a 
deterministic manner. Most of these problems are defined by fixed 
objective functions and solved through optimization. Many dynamic 
processes, such as gene expression regulation, are also modeled using 
differential equations with deterministic behavior. However, there are at 
least three situations in which fuzziness should be considered, i.e., 
intrinsic fuzziness in biological systems, multiple roles of a biological 
object, and fuzzy descriptions of biological phenomena. 

In recent years, there is an increasing awareness of the fuzzy aspects 
of biological systems, which is sometimes referred to as a paradigm shift 
for “new biology”. An expanding body of evidence has been found that 
many processes in biological systems are intrinsically fuzzy rather than 
deterministic. Numerous examples have demonstrated that fuzzy effects 
are physiologically and evolutionarily important in the development and 
function of living organisms. For example, it was found that the immune 
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repertoire, as a consequence of central tolerance, is able to recognize 
both self and non-self antigens in a fuzzy manner.  In this case, the key 
players of the immune system, T cells and antibodies, can recognize 
given self or “foreign-reactive cells” (non-self) to a certain degree, 
although deterministically. Such a fuzzy feature of the immune system 
may shed light on mechanisms of autoimmune diseases, such as systemic 
lupus erythematosus. Fuzziness can be achieved by random fluctuations. 
For example, random fluctuations are intrinsically important for 
balancing fidelity and diversity in eukaryotic gene expression and may 
produce variability in cellular behavior. The stochastic dynamics can also 
provide additional functional modalities on the enzymatic futile cycle 
mechanism that include stochastic amplification and signaling. This 
stochastic/fuzzy behavior may offer a novel type of control mechanism 
in pathways that contain these cycles. 

A biological object may have multiple roles, resulting in fuzzy 
memberships in each role. One gene may be involved in different 
functions or pathways. Beta-catenin is a multifunction protein, playing 
important roles in both cell-cell adhesion and intracellular signaling. In 
practice, when we cluster genes using biological data (e.g., microarray 
gene expression data), fuzzy memberships for a gene may be useful to 
serve as descriptors for that gene in the context of fuzzy clustering with a 
large set of genes. In this case, one gene can be present in two or more 
clusters simultaneously, with partial or full membership in each cluster. 

Another type of fuzziness in biomedical research results from the 
fuzzy description of biological terms. Our descriptions of many 
biological concepts often have difficulty fitting into a deterministic 
(crisp) explanation. As a result, our knowledge, concepts, and 
representations of biological terms may also be fuzzy, and fuzzy set 
theory is useful to describe these terms. For example, the species 
definitions for microbes can be fuzzy due to recombination of the genetic 
materials across species [Hanage et al., 2005]. The concept of “protein 
function” is sometimes fuzzy because it is often based on whimsical 
terms or contradictory nomenclature [Jansen and Gerstein, 2004]. This 
currently presents a challenge for functional genomics. In addition, 
descriptions for similarity and typicality can be fuzzy. For example, how 
much do two proteins resemble each other, what properties do they 
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(partially) share, how close is a given protein to the prototypical 
sequence of a protein family, etc. Such fuzziness could result from the 
limitations of classifications, natural language, or poor understanding of 
the underlying mechanism. Tolerance of fuzziness allows us to explore 
these biological concepts effectively. 

Fuzzy set theory in general and fuzzy logic specifically are natural 
ways to model ambiguous events that occur in human-like reasoning.  
People have no trouble operating with phrases such as “large risk factor”, 
“somewhat likely to be involved in cancer”, “significantly hyper 
methylated”, etc.  As will be seen, rules containing such ambiguous 
clauses can be successfully handled in a fuzzy logic system. 

The beauty (and also a danger, if we are not careful) of fuzzy set 
theory is that it offers a multitude of calculi for the fusion of partial 
support for a hypothesis under investigation, that is, flexible mechanisms 
to increase or decrease confidence in a decision as evidence unfolds.  In 
his seminal text on computer vision, [Marr, 1982], David Marr stated two 
principles to be followed in the design of intelligent (vision) algorithms.  
The first is called the Principle of Least Commitment (PLC). He states it 
simply as “Don’t do something that later must be undone”.  Hence, in a 
complex computing scenario, one where there are many decision making 
steps, avoid making deterministic decisions for as long as is possible.  It 
is very difficult, perhaps impossible, to recover from a wrong crisp 
decision early on.  Keep your options open until the situation demands a 
final answer.  While Marr was interested in computer vision, the PLC 
certainly applies to bioinformatics applications.  As a simple illustration, 
consider the problem of classifying new genes by their DNA sequence.  
Sequencing machines actually produce memberships (or probabilities) 
for all four DNA bases (A, C, T, G) at each position.  Most of the time, 
the nucleic acid with highest membership is chosen and, from that point 
on, the sequence is treated as if it were deterministic.  Hence, potentially 
valuable information is discarded and is unavailable in subsequent 
processing.  If this now deterministic sequence is matched to a database 
and, say, only the top match is considered, additional information is lost.  
Clearly, the concept of assigning and maintaining degrees of membership 
(perhaps confidence in competing hypotheses) or more general linguistic 
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labels in fuzzy set theory support the PLC for complex decision making 
applications as in bioinformatics. 

The second principle of Marr is called the Principle of Graceful 
Degradation (PGD).  By this he meant that algorithms should delivery a 
partial (reasonable) answer as input degrades.  In other words, intelligent 
algorithms should encompass a degree of robustness and continuity.  
Here also, techniques that utilize membership degrees or other fuzzy 
constructs in the calculation of their response to input conditions have 
the potential to degrade much more gracefully than their crisp 
counterparts.  Consider, for example, a simple cancer screening task that 
relies on a single test value, say the amount of expression of a particular 
gene in a microarray assay (not overly realistic, but for illustrative 
purposes).  If the outcome is binary (cancer/non-cancer) and the 
algorithm is crisp, say based on a threshold, then a slight amount of noise 
in the test score can actually flip the screening result from non-cancer to 
cancer or vice versa.  If however the output is a membership in the 
cancer diagnosis modeled as a trapezoid function around the threshold 
value [Klir and Yuan, 1995], such small perturbations only change the 
degree of risk in a correspondingly small amount.  Figure 2.2 shows a 
typical trapezoidal curve, along with other standard fuzzy membership 
functions.  This overly simple example illustrates the point that fuzzy 
models embrace the concept of the PGD. 

2.3 Brief History of the Field 

Concepts of vagueness and fuzziness have been contemplated in 
mathematics and science for quite awhile.  For example, in 1923 
Bertrand Russell stated “All traditional logic habitually assumes 
that precise symbols are being employed.  It is therefore not 
applicable to this terrestrial life, but only to an imagined celestial 
existence.” [Russell, 1923].  Like Russell, the philosopher Max 
Black was concerned with vagueness and imprecision in language, 
and the effect of these concepts on logic [Black, 1937].  In fact, he 
believed that all terms whose application involves using our senses 
are vague. Black, in 1937, actually came up with the concept that 
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we now associate with membership functions.  He even conducted 
a cognitive psychological experiment with a group of people that 
effectively constructed membership functions exemplifying 
vagueness of certain words.  However, most people attribute the 
beginning of fuzzy set theory to Lotfi A. Zadeh’s 1965 paper 
[Zadeh, 1965] that developed this topic in its current form.  An 
excellent treatment of the history of fuzzy sets and fuzzy logic can 
be found in [Seising, 2005].  The journal Fuzzy Sets and Systems 
published a “40th Anniversary of Fuzzy Sets” in December 2005 
that contains 14 position papers covering various aspects of the 
role and future prospects of fuzzy sets [Dubois, 2005].  

The mathematical basis for formal fuzzy logic can be found in 
infinite-valued logics, first studied by the Polish logician Jan 
Lukasiewicz in the 1920s (see [Borkowski, 1970]).  Lukasiewicz 
constructed a series of multi-valued logical systems, generalizing from 
small finite numbers of truth-values to those containing infinite sets of 
truth values.  His work and calculation formulae are ingrained in modern 
fuzzy set theory and fuzzy logic, the genesis of which is credited to 
Zadeh in his seminal three part treatise on the theory and applications of 
linguistic variables [Zadeh, 1975a; Zadeh 1975b; Zadeh 1976]. 

Perhaps the biggest boost to the visibility and perceived utility of 
fuzzy set theory came from the application of rule-based fuzzy systems 
to problems in control [Mamdani and Assilian, 1975; Mamdani, 1977; 
Takagi and Sugeno, 1985; Sugeno, 1985, Verbruggen and Babuska, 
1999, Passino and Yurkovich, 1998].  In what has become commonplace 
now, sets of linguistically described rules were created and inserted into 
a variety of non-linear control systems.  The ease of design and the 
smoothness of the control surface from only a handful of rules made 
fuzzy controllers very popular in a variety of products from the 
automotive industry, consumer electronics markets, etc.  Fuzzy 
controllers are well suited for low-cost embedded systems. 

While the big economic impact of fuzzy set theory and fuzzy logic 
centers on control, particularly in consumer electronics, there has been, 
and continues to be, much research and application of these technologies 
in pattern recognition, information fusion, data mining, and automated 
decision making [Bezdek et al., 1999, Keller et al., 1996].  There are 
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national, multi-national, and international fuzzy systems professional 
societies around the globe whose purposes are to foster research, 
development and application of fuzzy set theory and fuzzy logic.  Fuzzy 
systems are one of the core pillars of the IEEE Computational 
Intelligence Society. 

An introduction to the key components of fuzzy set theory and fuzzy 
logic is now given with the view toward computational methods of use in 
bioinformatics.  After a discussion of the general principles of fuzzy set 
theory, membership functions and fuzzy connective operators, we focus 
on those areas for which we present specific applications within 
bioinformatics:  fuzzy logic rule based systems, fuzzy clustering, fuzzy 
classifiers, particularly, the Fuzzy K-Nearest Neighbor algorithm, fuzzy 
measures and the fuzzy integral.  The reader is referred to [Klir and 
Yuan, 1995; Bezdek et al., 1999] for more extensive development of the 
theory and selected applications. 

2.4 Fuzzy Membership Functions and Operators 

2.4.1 Membership functions 

Traditional set theory is based on binary, or two-valued, logic.  Given a 
“universe” set X, a subset A of X can be defined in several ways.  
Suppose that X is the set of integers.  The subset of even positive integers 
can be specified by listing its members: 
 { }",8,6,4,2=A  

or by providing defining properties 

 { }integer positiveeven an  is xXxA ∈= . 

Alternately, we define a subset A by its characteristic function, which 
is also denoted by the set name, }1,0{: →XA  from X into the binary set 
{0,1} given by 
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Zadeh [1965] simply defined a fuzzy subset of X as a 
function ]1,0[: →XA , i.e., a characteristic function from X into the 
interval [0,1].  The value A(x) is called the membership of the point x in 
the fuzzy set A or the degree to which the point x belongs to the set A.  
For example, the fuzzy subset of “big positive even integers” could be 
defined by 

 
⎪⎩

⎪
⎨
⎧ =−=

else.0

,2,4,6 if21)( "x
xxA  

An example closer to the topic of this book is a membership function, 
A, that describes the similarity of a protein sequence S to that of a 
specific sequence called S’ in a protein database. A typical measure for 
sequence similarity is the expectation value, Eval, returned from BLAST 
[Altschul et al., 1997]. Assume the score for the alignment between S 
and S’ under a scoring scheme is R. Eval indicates the number of 
different alignments with scores equivalent to or better than R that are 
expected to occur in a database search by chance. Although expectation 
value is a good descriptor for sequence search from a database, it does 
not reflect all the information of the protein similarity. For example, 
when two sequences are identical, the expectation value varies 
accordingly to the length, although biologically the two proteins are the 
same. Two different long sequences can have better expectation value 
than two identical short sequences. To address this issue, we can describe 
the similarity between any protein sequence and one target protein 
sequence from biological point of view using a fuzzy membership 
function as an alternative measure, e.g., 

 
⎩
⎨
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where sim(S,S’) is the sequence identity of the alignment, i.e., the 
percentage of the identical amino acids in the alignment.  
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Figure 2.2  Examples of common fuzzy membership functions. (a) triangular, (b) 
trapezoidal, and (c) smooth quadratic functions. 
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(a) 
 

 
(b) 
  
Figure 2.3 Practical membership function generators from a nursing application in having 
children assess their level of pain for medication dosage.  In (a), the child slides a bar to 
the place on the visual scale that best represents her level of pain.  The nurse can read off 
the analog “pain membership” value from the reverse side.  (b) This is for younger 
children and demonstrates a similar, though discrete, version of pain membership. These 
data are the property of McNeil Consumer Healthcare and McNeil maintains sole 
publication and dissemination rights. 
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All fuzzy set theory is based on the concept of a membership 
function.  Where do these membership functions come from?  In many 
cases, they are defined as in the two examples above – common sense 
definitions that convey some linguistic expression. More generally, they 
come from expert knowledge directly or they can be derived from 
questionnaires, heuristics, etc.  This is a human-centric view and is 
certainly open to debate.  In many cases, the membership functions take 
on specific functional forms like triangular, trapezoidal, S-functions, pi-
functions, sigmoids, and even Gaussians for convenience in 
representation and computation. Pi-functions and S-functions are 
constructed from quadratic functions “pieced together” to make smooth 
curves.  Figure 2.2 displays several common fuzzy membership 
functions.  Alternately, membership functions (or the parameters of the 
specific equation forms) can be learned from training data, much as 
probability density functions are learned.  Some fuzzy clustering 
algorithms naturally produce membership functions as their output. A 
neural network, given proper input/output training data, also acts as a 
membership function for new input. 

One of our favorite practical membership functions comes from the 
field of pediatric nursing.  A child is asked to slide the bar to a position 
indicative of his or her level of pain in Figure 2.3(a).  The color and 
width provide a guide.  The nurse turns the instrument over to recover 
what is effectively a membership (after dividing by 10) in the fuzzy set 
“Pain”.  The goal is to provide sufficient pain medication without over 
dosing.  This is a continuous membership.  For very young children, see 
the discrete memberships as shown in Figure 2.3(b). 

2.4.2 Basic fuzzy set operators 

Once fuzzy subsets of a universal set X are defined, definitions for the 
complement of a set, the union of two sets and the intersection of two 
sets are required to actually generate a “set theory”.  In 1965, Zadeh 
proposed the following.  Suppose ]1,0[: →XA   is a fuzzy subset of X.  
The complement cA  of A is defined by 

 )(1)( xAxAc −= .  
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Additionally, if ]1,0[: →XB is another fuzzy subset of X, Zadeh 
defined 
 )()()}(),(max{))(( xBxAxBxAxBA ∨==∪  

and 
 )()()}(),(min{))(( xBxAxBxAxBA ∧==∩ . 

Why did Zadeh define the operators in this manner?  Quite simply, it 
was because these definitions revert back to the standard crisp definitions 
if the subsets are crisp.  Hence, this forms a true extension of normal set 
theory.  As can be found in the many textbooks on fuzzy set theory (see 
[Klir and Yuan, 1995; Pedrycz and Gomide, 1998] for example), all of 
the theorems of crisp set theory hold for this fuzzy set theory except two: 
the Law of Contradiction (LOC) and the Law of the Excluded Middle 
(LEM).  The LOC states that the intersection of a set and its complement 
must be empty ( φ=∩ cAA ), while the LEM requires that the union of 
a set and its complement must be the whole universe set ( XAA c =∪ ). 
Since crisp set theory is formally equivalent to the first order predicate 
logic, these two laws state that a proposition can not be both true and not 
true simultaneously, and that either a proposition or its negation 
(complement) must be true.  While these statements seem reasonable, 
they give rise to a paradox within classical logic, commonly called 
Russell’s paradox.  A simple version goes something like this:  Russell’s 
barber has a sign that states “I shave everyone, and only those, who do 
not shave themselves”.  Then who shaves the barber?  If he shaves 
himself, then he can not (shaves only those who do not shave 
themselves); but if he does not shave himself, then he must (shaves 
everyone who don’t shave themselves).  Such a dilemma!  As pointed 
out earlier, some biological entities have multiple roles.  Hence, it is 
impossible to put them only into one set; they may also naturally fit into 
the complement set.  It is a mistake, for example, to put Beta-catenin 
only in the cell-cell adhesion subset since it also clearly belongs in the 
complement of the cell-cell adhesion subset (involved in intercellular 
signaling).  So, perhaps it is not that unreasonable to disobey the LOC 
and the LEM. 
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Suppose that the membership function values for a particular element 
x in X are interpreted as the confidences that x possesses certain 
properties, e.g., )(xA  is the confidence that x is involved in cell-cell 
adhesion and )(xB  corresponds to the confidence that x functions in 
intercellular signaling.  Then the original Zadeh definitions of 
complement, union, and intersection produce confidences related to the 
linguistic concepts of NOT, OR, and AND: )(xAc  is the confidence that 
x is NOT involved in cell-cell adhesion; ))(( xBA∪  gives the degree to 
which x is either involved in cell-cell adhesion OR x is involved in 
intercellular signaling; ))(( xBA∩ computes the confidence that x is 
involved in cell-cell adhesion AND x is involved in intercellular 
signaling.  Beta-catenin would have a non-zero membership in the 
intersection of A and Ac. 

The good news and the bad news in fuzzy set theory is that there are 
infinite numbers of ways to define complement, union and intersection 
[Klir and Yuan, 1995; Dubois and Prade, 1985]. An alternate fuzzy set 
theory that is useful for fuzzy logic inference is generated by the 
operators 
 ))()((1))(( xBxAxBA b +∧=∪ , 

 )))()(((10))(( b xBxAxBA +−∨=∩ , 

called the bounded sum and bounded difference, along with the standard 
complement,  

 )(1)( xAxAc −= . 

Each such extension of crisp set theory loses either LOC and LEM or 
two other properties (idempotency and distributivity) [Klir and Yuan, 
1995].  For this choice, LOC and LEM are satisfied, while idempotency 
and distributivity are lost.  Actually, there are infinite families of union, 
intersection and complement operators that are extremely useful in 
multicriteria decision making where partially supported criteria are to be 
combined in disjunctive (OR) and/or conjunctive (AND) manners to 
reach an overall evaluation of an alternative.  

One such infinite family of connectives is due to Yager [Yager, 
1980].  Here, complement, union and intersection are given by 
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 )(0, ,))((1)( 1/ ∞∈−= wxAxA wwc , (2.1a) 

        ),(0, },))()((,1min{))((
1

∞∈+=∪ wxBxAxBA www
w  and  (2.1b) 

 
).(0,
},)))((1))(((1,1min{1))((

1

∞∈
−+−−=∩

w
xBxAxBA www

w . (2.1c) 

For all choices of w, the value of the Yager union operator is greater 
than the standard union (max), while that for the intersection is less than 
the standard intersection (min).  In other words, a Yager union operator 
is more optimistic than the maximum (in combining confidence), 
whereas each Yager intersection produces values that are more 
pessimistic than the minimum.  The parameter w controls the degree of 
optimism or pessimism.  In fact, the following limits hold: 
 )()())((lim

0
xBxAxBA w

w
∨=∪

→
 and 

 )()())((lim
0

xBxAxBA w
w

∧=∩
→

. 

At the other end, i.e., the limits as ∞→w , generate the drastic union 
and intersection, defined by 
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Besides their use in what is to come, fuzzy operators have been used 
extensively in multicriteria decision making [Bellman and Zadeh, 1970; 
Yager, 1988; Yager, 2004].  We end this section with an example of the 
use of fuzzy set operators in multicriteria decision making. 
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Example 2.1. As a particularly simplistic illustration, consider a decision 
tree, as in Figure 2.4, to assess cancer risk based on the following 
observations.  Suppose we decide that cancer risk should be high if either 
internal factors or environmental factors are high.  This is modeled by a 
union operator (OR). We define the internal factors to be the conjunction 
(AND) of genetic predisposition and genetic test results.  In this 
particular example, the rationale for using a conjunction might be that for 
some types of cancer, the test might be subject to a high rate of false 
positives, and so, these results can be offset by low genetic propensity.  
Environmental factors are aggregated as the disjunction (OR) of amount 
of smoking, hazardous work risk and the negation, or complement 
(NOT), of good nutrition.  Clearly, this is a gross oversimplification and 
is included to demonstrate the utility of fuzzy operators in multicriteria 
decision making more than focusing on reality.  In Figure 2.4, we model 
each of the operators with the corresponding Yager connective (Equation 
2.1).  The parameters for these four connectives will be labeled w1 for the 
top disjunction, w2 for the conjunction of internal factors, w3 for the 
disjunction of external factors and w4 for the complement. 

Given the tree in Figure 2.4, suppose that we have determined the 
following fuzzy membership values for the leaf nodes: propensity = 0.2, 
test results = 0.8, smoking risk = 0, job risk = 0.1, and good nutrition = 
0.8.  That is, a particular patient has a low genetic propensity but a 
reasonably high likelihood from a test, while living a good lifestyle.  If 
the logical operators are the classical binary ones, then the risk of cancer 
would be zero for this set, assuming that the fuzzy memberships are 
turned binary at a 0.5 threshold.  The advantage of fuzzy set theory is 
that the operators that govern complement, disjunction and conjunction 
can be tailored to reflect different user dispositions. Table 2.1 displays 
the “cancer risk” output for a few choices of connection parameters. For 
example, using the parameters on line 3 of Table 2.1, we calculate the 
Risk as: 

7.0})}))))8.01((}))1.00(,1((min{,1(min{
})))8.01()2.01((,1min{1((,1min{

25.01/115.0211/111

5.025.05.0

=−++
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Figure 2.4 Oversimplified tree structure to demonstrate the utility of fuzzy operators 
 

The weights in case 1 of Table 2.1 produce operators that behave like 
the classical binary ones, and hence produce risk near zero.  If the patient 
or doctor is more aggressive relative to assessing risk, Table 2.1 provides 
examples that produce low, moderate and even complete risk for those 
same inputs.  While we claim that this flexibility is an advantage of fuzzy 
set theory, some may argue that it confuses the situation.  The message is 
that no one should use computational or logical operations on data 
without understanding how these operators combine the data.  By 
studying fuzzy set connectives (as in [Klir and Yuan, 1995]), different 
degrees of aggressiveness can be quantified and produce meaningful 
tradeoffs to a patient in this case, or for more general multicriteria 
decision making processes. 

Table 2.1 Cancer risk output for various weights for the input values stated in the text 

Parameters w1 w2 w3 w4 Risk 
1 0.5 0.5 2.0 0.5 0.1 
2 1.0 10.0 1.0 0.5 0.3 
3 0.5 0.5 1.0 2.0 0.7 
4 0.5 0.5 0.5 2.0 1.0 
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Table 2.2 Risk output for various smoking habits for w1=1.0, w2=10.0, w3=1.0, w4=0.5 
and for the input values stated in the text. 

Smoking 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Risk 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0 1.0 1.0 

 
Additionally, for a given choice of parameters, a “what-if” game can 

be played.  In the above example, with the parameters as in case 2 of 
Table 2.1, we can examine the change in cancer risk given by changing a 
patient’s smoking habits, as displayed in Table 2.2. 

2.4.3 Compensatory operators 

Of course, the meaningfulness of the results of an analysis as in example 
2.1 depends on the faithfulness of the model and the accuracy of 
assessing the input values.  This problem is not specific to fuzzy set 
theory, but is inherent to all computational paradigms.  The discussion 
here makes no overt claims to accurately model cancer risk, but is only 
used to demonstrate the flexibility of fuzzy connectives in decision 
processes. 

In Figure 2.4, we might conjecture that the internal and external 
factors might better be combined in a compensative manner, i.e., more 
like an average than a union.  Besides modeling negation (NOT), 
disjunction (OR) and conjunction (AND), fuzzy set theory admits 
mechanisms to model compensatory connections, i.e., aggregation 
operators where a high value in matching one criterion can compensate 
to some extent for a low value for another criterion. The simplest of these 
is called the generalized mean.  If naaa ,...,, 21 are the degrees of 
satisfaction of n criteria, the generalized mean is defined as: 

 
αααα
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where α is a fixed real number.  For α = 1, this equation implements the 
arithmetic average, for α = -1, we have the harmonic average, and for α 
converging to 0, Equation 2.2 produces the geometric mean, the nth root 
of the product of the values. All instantiations of the generalized means 
produce values between the minimum and maximum of the degrees of 
satisfaction of the individual criteria.  Additionally, 
            { }nn aaaah ,,min),,(lim 11 "" =

−∞→ αα
      and   

 { }nn aaaah ,,max),,(lim 11 "" =
∞→ αα

.  

This high degree of coverage makes fuzzy set connectives appealing for 
multicriteria decision making. 

In [Krishnapuram and Lee, 1992a, 1992b], Yager unions and 
intersections, along with generalized means, were used in hierarchical 
decision networks, and a gradient descent-based training algorithm was 
created to learn the parameters of the connectives in the network from a 
set of input/output training data.  However, there were fairly 
cumbersome tests to decide if a node should be a union, intersection or 
mean (and to flip between them). A more general class of connectives, 
called fuzzy hybrid operators, combine all three types of linguistic 
connectives into a single equation. The typical arithmetic and 
multiplicative hybrid operators are given by: 

 )())(1( 1 BABABA ∪+∩−=⊕ − γγ γ
γ  (2.3) 

 γγ
γ )()( 1 BABABA ∪⋅∩=⊗ −  (2.4) 

where γ is between 0 and 1 and controls the amount of “mixing” of the 
union and intersection components, i.e., if γ is close to 0, the hybrids acts 
like an intersection, near 1 produces a union-like response, and for γ 
around 0.5, the hybrid takes on the characteristics of a generalized mean. 

Zimmermann and Zysno [1980] proposed a hybrid operator for 
multicriteria aggregation that was modeled after the compensatory nature 
of human aggregation. This hybrid operator (γ model) is an example of 
Equation (2.4) and is given by: 
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where, ia  ∈[0,1] are the criteria satisfactions to be aggregated,  

10 ≤≤ γ  is the mixing coefficient, and n
n

i
i =∑

=1
δ . Here, iδ  are weights 

associated with each criterion ia  and n is the number of criteria being 
aggregated. 
 

 
 

Figure 2.5 A fuzzy aggregation network of multiplicative hybrids used in [Parekh and 
Keller, 2007]. 

 
Krishnapuram and Lee [1992a,b] also developed a back-propagation 

algorithm to learn the parameters of operators of this type in a network-
based decision application.  While the algorithm converged, the 
derivatives were quite messy and as with all such algorithms, 
convergence could only be guaranteed to a local minimum of a least 
squares fitness function.  Keller et al. [1994] extended the approach to 
additive hybrid networks.  In [Parekh and Keller, 2007], particle swarm 
optimization [Eberhart and Kennedy, 1995; Clerc, 2004] was used to 
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train these aggregation networks.  Figure 2.5 displays such a network.  
The advantage of swarm optimization is that many potential solutions 
(here, the list of all node parameters) are randomly generated and 
through individual particle memory and communication between 
particles, large areas of the optimization search space can be covered 
while still moving quickly to a (usually very good) local optimum of the 
fitness function.  Additionally, in this case, no derivatives were 
necessary, since each particle contains all the node parameters and 
evaluation is performed directly at each time step. 

Table 2.3 Sample of the 800 training and 200 testing input/output data for learning the 
parameters of the nodes in the network of Figure 2.5, where each node has 2 inputs 

Sample of Training Data 
Node 1 Node 2 
a1 a2 a1 a2 

Y Y' SSE 

0.425 0.590 0.655 0.861 0.364 0.363 
0.768 0.452 0.629 0.668 0.209 0.211 
0.532 0.053 0.521 0.548 0.018 0.018 
0.235 0.868 0.722 0.892 0.490 0.492 
0.673 0.925 0.428 0.829 0.542 0.541 

0.00175 

Sample of Test Data 
0.467 0.538 0.518 0.990 0.423 0.420 
0.771 0.678 0.617 0.999 0.621 0.622 
0.810 0.344 0.392 0.109 0.005 0.005 
0.997 0.644 0.235 0.630 0.242 0.244 
0.272 0.032 0.821 0.528 0.009 0.008 

0.00052 

 
 

Example 2.2. As an example, synthetic data was used to verify this 
approach. Parameters for the multiplicative hybrid operators were 
randomly generated and assigned to each node.  Then, a table of 1000 
input values was randomly generated and corresponding outputs were 
calculated from successive applications of Equation 2.5. The training 
data consisted of 800 data points and the test data had 200 data points.  
Table 2.3 shows a sample of the training and test data from one 
experiment while Table 2.4 shows the original and recovered hybrid 
parameters.  With an easy and effective training mechanism, such fuzzy 
aggregation networks are attractive tools for hierarchical confidence 
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fusion.  Besides the ability to approximate input/output training data, an 
additional advantage of these networks is that after training, each node 
can be associated with a linguistic connective (disjunction, conjunction, 
mean), based on the corresponding value of γ, and the weights give an 
indication of the importance of the particular criteria towards the fused 
result. 

Table 2.4 Actual and recovered parameters corresponding to Table 2.3. 

Parameter Actual Recovered 
δ1 0.440 0.446 
δ2 1.559 1.553 

Node 1 

γ 0.255 0.341 
δ1 0.161 0.163 
δ2 1.838 1.836 Node 2 
γ 0.180 0.198 
δ1 0.786 0.816 
δ2 1.213 1.183 Final Node
γ 0.0846 0.028 

2.5 Fuzzy Relations and Fuzzy Logic Inference 

There are times when domain knowledge, and hence, the decision 
functions, about a particular problem can be best described in terms of 
linguistic rules.  For example, in the cancer risk example (Example 2.1), 
we might have rules like 
 

IF The Internal Factor Risk is SOMEWHAT LOW and 
 The External Factor Risk is LOW 
THEN 
 The Overall Cancer Risk is LOW. 

 
Concrete applications of using linguistic rules will be shown in 

Chapters 3 and 5.  Traditional crisp expert systems including those that 
manipulate numeric confidences or probabilities have been around for 
many years [Ignizio, 1991; Giarratano and Riley, 2005].  Fuzzy logic 
extends this approach by modeling linguistic propositions, rules and the 
inference procedure directly with fuzzy sets.  In this section we describe 
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the background necessary to understand and construct fuzzy logic 
inference systems for bioinformatics problems. 

Fuzzy logic begins with the concept of a linguistic variable [Zadeh, 
1975a,b; Zadeh, 1976].  A linguistic variable is, as its name suggests, a 
variable whose values are words.  For example, the linguistic variable 
“Age” might take as values “infant”, “youth”, “adult”, “middle-agged”, 
“senior”, “elder”.  With any linguistic variable, there is an underlying 
domain, X, that will be used to create the meanings for the linguistic 
values.  In our simple illustration above, the underlying domain consists 
of the real numbers between 0 and 120.  Each linguistic value has a fuzzy 
subset of X that serves as its definition.  An example will be given at the 
end of this section. 

Once we have this fundamental concept, we can build the machinery 
necessary for fuzzy logic inference.  In what follows, let 

, , , , , 21 nXXXX …  and Y be domains, mUUUU  ,, , , 21 … , andV be 
linguistic variables, nAAA  ,, , 1 … , kBBB  ,, , 1 … be the fuzzy sets that 
model linguistic values over respective domains.  An atomic proposition 
in fuzzy logic is a statement of the form “U is A”, where U is the name of 
a linguistic variable and A is the name of a linguistic value, i.e., it is the 
name of a fuzzy subset of the domain X.  In the above rule, one atomic 
proposition is “Internal Risk Factor is Somewhat Low”. 

The conjunctive proposition between two fuzzy set can be 
written as follows [Klir and Yuan 1995]: 
 2211  is  and  is AUAU  

where the iU are linguistic variables over domains iX ; and where )( ii xA    
are linguistic values represented by fuzzy sets on those domains. 

The result of this operation is a fuzzy relation of the cross product 
domain,   based on  1U  and 2U   which is called the Cylindrical Closure 
of the fuzzy sets 1A and 2A .  A fuzzy relation so referenced is just a 
fuzzy subset of 21 XX × .   The Cylindrical Closure can be viewed as the 
intersection of the extension of each fuzzy set to the cross product 
domain 21 XX × , i.e., a fuzzy subset, 21 AA × , of 21 XX ×  where 

)()(),( 22112121 xAxAxxAA ∧=× . Here we use minimum as the 
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intersection operator, but note that any fuzzy intersection operator could 
be used. 

A condition proposition, or fuzzy implication, between two fuzzy 
propositions is written as 
 IF U is A THEN V is B 
where U and V are linguistic variables that have elements Xx ∈ , and  

Yy ∈ respectively; and where )(xA , )(yB  are linguistic values 
represented by fuzzy sets on those elements.  The definition of an 
implication proposition is a fuzzy relation R between X and Y, based on   
U and V , that can take many forms in combining the input fuzzy sets. 
Three common definitions used in many fuzzy rule systems are: 

The Lukasiewicz implication (Zadeh’s original implication operator): 
 ))()(1,1min(),( yBxAyxRz +−=  

Correlation min implication: 
 ))(),(min(),( yBxAyxRcm =  

Correlation product implication: 
 )(*)(),( yBxAyxRcp =  

Note that a fuzzy implication proposition is just a (fuzzy) rule.  The 
Compositional Rule of Inference or Generalized Modus Ponens can now 
be described to combine a fuzzy rule and a linguistic proposition. 

The Compositional Rule of Inference is [Zadeh, 1973]: 
Rule: IF  U  is  A  THEN V is B  
Fact: U  is  'A  
Conclusion: V  is  'B  

where the expression of conclusion is the composition operation: 
 ),()(')(' yxRxAyB D=  

Here, ),( yxR  is the chosen translation of the fuzzy implication.  The 
composition operation is defined as: 
 { }),(),('minsup),()(')(' yxRxAyxRxAyB

Xx∈
== D  

where “sup” is the supremum of the set, i.e., the least element that is 
greater than or equal to each element in the set (the Max if all sets are 
finite). 
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Rarely will rules only have one antecedent clause.  Rules with 
multiple antecedent clauses pose no conceptual problem. The 
Compositional Rule of Inference with multiple antecedent clauses is the 
following: 
         Rule: IF 1U is 1A and 2U is 2A and …and nU is nA THEN V is B. 

         Fact: 1U   is 1'A and 2U is 2'A and … and nU  is nA′ . 

         Conclusion:V  is 'B . 
The first step in this case is to find the cylindrical closure,  

nAAA ××× "21 , of the n antecedent clauses, i.e., the intersection of the 
extensions of all these fuzzy sets to the domain nXXX ××× "21 . Once 
computed, the chosen definition for implication can be applied to the 
rule: 
 IF  >< nUUU ,,, 21 "  is  nAAA ××× "21  THEN V is B. 

This produces a fuzzy relation R between nXXX ××× "21   and Y, i.e., 
a fuzzy subset of YXXX n ×××× "21  .  Finally, the fuzzy conclusion 
can be drawn with the compositional rule of inference as 
 ),,,(),,()(' 111 yxxRxxAAyB nnn …D…" ′××′=  

The Compositional Rule of Inference with several rules takes the 
following form: 

Rule 1: IF 1U is 11A and …and nU   is nA1  THEN V is 1B  
Rule 2: IF 1U is 21A and …and nU   is nA2  THEN V is 2B  
    : 
    : 
Rule k: IF 1U is 1kA and …and nU is knA THEN V is kB  
Fact: 1U  is 1'A  and 2U   is 2'A and … and   nU is nA′  
Conclusion:  V  is  'B  

Each rule is translated as above to form ),,,( 1 yxxR ni …  and then the 
compositional rule of inference is applied to that rule with the fact 
proposition to obtain ),,,(),,()(' 111 yxxRxxAAyB nininii …D…" ′××′= . 
These partial conclusion expressions are aggregated into a single output 
fuzzy set by either 
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 ∑
=

=
k

i
i yByB

1
)(')(' or 

 { })('max)('
1

yByB i

k

i=
= . 

Note that the first expression may exceed 1 for particular values of y and 
hence, not formally be a fuzzy subset of Y.  However, it is easy to 
normalize.  In fact, this formula is popular in those cases like fuzzy 
control where the output fuzzy set needs to be converted to a single 
numeric value.  This process is known as defuzzification. The most 
common form is centroid defuzzification: 
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While the above development handles the general case of fuzzy 
inference, in most applications of fuzzy rule-based systems, the inputs 
are not actually fuzzy sets themselves, but crisp values in their respective 
domains.  For example, in a fuzzy system to perform classification, the 
inputs may be values of features extracted from the objects to be 
classified.  The rules may contain propositions like “Feature 1 is LOW”, 
“Class 1 confidence is HIGH”, etc., indicating the uncertainty in the 
decision process.  However, in application, given an object to classify, 
Feature 1 is normally a real number, 1x .  The standard method to convert 
it to a fuzzy set for the inference process is to create a (crisp) set that is 1 
for x1 and zero everywhere else in the domain 1X .  This makes the firing 
of the rules particularly simple [Klir and Yuan 1995].  Alternately, a 
simple triangular set, a pi-function, or any membership function can be 
centered at 1x  to explicitly model the uncertainty in the feature 
extraction (see Figure 2.2). This process of converting measured crisp 
inputs into fuzzy sets for inference purposes is known as fuzzification.  It 
may seem artificial at times, but the rule clauses themselves describe the 
uncertainty and variability in the problem domain, so, the exact form of 
fuzzification is less critical. 
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The system of inference described above is referred to as a Mamdani-
Assilion or MA fuzzy rule system [Mamdani, 1977].  An alternate 
formulation, denoted as a Takagi-Sugeno-Kang (TKS) system [Takagi 
and Sugeno, 1985; Sugeno and Kang, 1988] only modifies the 
membership functions in the consequent clause.  It was developed for 
control applications where the output of the rule firing should be a 
function of the set of crisp input values.  Instead of a general fuzzy set B 
of Y, the output of each rule is a specific function of the real inputs.  The 
antecedent part of each rule, Ri, is matched as in the MA approach, but 
the output then becomes ),,(),,( 111 nininii xxfxxAAy ……" ⋅′××′= .  
The weighted average of this set of k values is used as the system output. 
One of the main motivations to recast fuzzy inference in this way is that 
stability theory for fuzzy controllers could be developed [Passino, 1998; 
Verbruggen and Babuska, 1999].  For the purposes of this book, either 
method can be used to produce similar results for bioinformatics 
problems.  The choice is really in the description of the consequent 
clause, as will be demonstrated in the examples below. 

Fuzzy logic systems are quite powerful and have been used to in 
many applications from non-linear control to classification.  However, a 
common question is often asked:  Where do the rules come from?  Much 
like our discussion of membership functions, sometimes the rules come 
from experts.  The person who has controlled a complex piece of 
equipment can linguistically describe his or her reactions to a variety of 
input conditions.  Think about a simple task of balancing a broom in the 
palm of your hand.  While you may not be able to solve the equations for 
motion in your head, at any instant, you can see roughly the angle the 
broom makes with the desired vertical orientation, say in terms of words 
like “big”, “medium”, “small”, etc., and you can “feel” the rate at which 
the broom is moving, either up or down and quantized in a similar way to 
the angle.  (Note that here we only consider the broom falling away from 
us, through both directions should be taken into account.)  It wouldn’t 
take long for you to come up with rules like “IF the broom’s angle is 
MEDIUM and the broom is falling away from me SLOWLY THEN 
push my hand forward FAIRLY FAST”.  Balancing the “inverted 
pendulum” on a motorized cart was one of the early demonstrations of 
fuzzy logic rule-based control. 
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In cases where training data is available, fuzzy rules can be learned, 
many times through the use of clustering algorithms or other 
computational intelligence techniques like neural networks, evolutionary 
computation, swarm intelligence, etc. (for example, see [Pedrycz and 
Gomide, 1998, Zurada et al., 1994, Fogel and Robinson, 2003]).  
Learning the rules (and their membership functions) is treated as an 
optimization problem; the performance of the rule system on the training 
data is the function that needs to be maximized.  There are many tools 
available to manually build or to learn fuzzy rule systems.  In fact, in the 
example given below, Matlab contains a fuzzy logic toolbox containing 
MA, TKS and a “neuro-fuzzy” implementation of the TSK model (called 
ANFIS [MathWorks, 1995]) that supports learning both the antecedent 
membership functions and the consequent function parameters. 

Fuzzy rule-based systems clearly generalize standard expert systems.  
In the inverted pendulum example, an equivalent crisp rule control 
system could be developed by quantizing the angle and the rate of 
motion into small intervals and building a rule for all pairs of intervals, 
the output of each rule being a set velocity of cart motion.  How fine 
does the quantization need to be?  That depends on how smooth you 
desire the control to be.  Fuzzy rule systems, by their very construction, 
are great interpolators and so, few rules are usually needed when 
compared to crisp expert systems.  Should fuzzy rules always be used?  
If the data is purely symbolic in nature, then fuzzy logic certainly doesn’t 
apply.  Probabilities can be associated with crisp rules and uncertainty 
can be updated along with rule firing.  Bayesian networks, or more 
generally, belief networks offer alternative ways to encode and manage 
probabilistic uncertainty in hierarchical frameworks.  The choice of 
model should always be dictated by the form of the problem, the nature 
of the uncertainty, the ease of use of the particular formulation, and the 
meaningfulness of the results. 

In Chapters 3 and 5, we will show specific applications of fuzzy rules 
to bioinformatics. Here, we close with a straight forward example of a 
fuzzy inference system from [Wang et al., 2006].   
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Example 2.3. This application involves softening the output of the Short 
Physical Performance Battery (SPPB) test, a series of timed physical 
activities that have been created to evaluate, discriminate, and predict 
physical functional performance for both research and clinical purposes, 
primarily for physically impaired older adults. The original scoring 
system of the SPPB test uses crisp time boundaries to assign the subject 
to discrete classes of performance. The crisp (and somewhat arbitrary) 
nature of the thresholds can easily produce anomalies. The SPPB test 
measures balance, gait, strength, and endurance. Although it is a timed 
performance test, each subtask score is an integer value in the range 0-4.  
A score of 0 indicates the inability to complete the task in a nominal time 
frame while categories 1-4 are assigned to the corresponding quartiles of 
time needed to perform the action.  The original scoring for the SPPB 
standing test is shown in Table 2.5 [Guralnik et al., 1994]. 

Table 2.5 Scoring performance on tests of standing balance 

Score Side by side stand Semi-tandem stand Full tandem stand 
0 t< 10 sec. Not attempted Not attempted 
1 t=10 sec. t< 10 sec. Not attempted 
2 t=10 sec. t=10 sec. t< 3 sec. 
3 t=10 sec. t=10 sec. 3sec.<=t<10sec. 
4 t=10 sec. t=10 sec. t=10 sec. 

In [Wang et al., 2006], rules and the membership functions for the 
linguistic values were constructed manually with input from nurses.  The 
set of fuzzy rules for Standing Test performance is: 

1. IF (Side-by-Side_Stand_Time is SHORT) THEN 
(Standing_Test_Performance is VERY_POOR)  

2. IF (Side-by-Side_Stand_Time is LONG) and (Semi-
Tandem_Stand_Time is SHORT) THEN 
(Standing_Test_Performance is POOR)  

3. IF (Side-by-Side_Stand_Time is LONG) and (Semi-
Tandem_Stand_Time is LONG) and (Full-Tandem_Stand_Time 
is SHORT) THEN (Standing_Test_Performance is OK)  
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4. IF (Side-by-Side_Stand_Time is LONG) and (Semi-
Tandem_Stand_Time is LONG) and (Full-Tandem_Stand_Time 
is MEDIUM) THEN (Standing_Test_Performance is GOOD)  

5. IF (Side-by-Side_Stand_Time is LONG) and (Semi-
Tandem_Stand_Time is LONG) and (Full-Tandem_Stand_Time 
is LONG) THEN (Standing_Test_Performance is 
EXCELLENT). 

 
Membership functions were modeled by either triangles and 

trapezoids or smooth curves, in this case, chosen heuristically to reflect 
common sense.  As an example, the membership functions for Short, 
Medium, and Long for the linguistic variable Full-Tandem Stand are 
shown in Figure 2.6. 

 
 

Figure 2.6 Membership functions for Full-Tandem Stand, used in the fuzzified scoring 
rule-based SPPB system. 
 

The system was implemented in Matlab [MathWorks, 1995] using 
both an MA fuzzy set output and a functional TSK output format (the 
output function for each rule is just the class label value, 0-4).  Figure 2.7 
displays one implementation of an MA system response when the side by 
side stand is 10 seconds, semi-tandem stand is 10 seconds, and full 
tandem stand is 9 seconds.  Here, the defuzzified output is 3.2, close to 
the crisp output of 3 in this case.  The fuzzy system provides a smoother 
transition from one category to the next as the times change.  One goal of 
that project is to do frequent passive monitoring of elders to detect 
gradual changes in their physical performance, and such a fuzzy system 
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provides a higher degree of specificity to do early detection of functional 
decline.  

 
Figure 2.7 Matlab implementation of simple MA rule system for PSSB scoring 
 
 

 
 
Figure 2.8 Matlab implementation of simple TSK rule system for fuzzy PSSB scoring. 
 

Figure 2.8 shows a similar configuration for a TSK version of the rule 
base, with smooth membership functions.  Particularly with small rule 
bases, the performance is not overly sensitive to the form of the precise 
definition of the membership functions. 
 



Chapter 2: Introduction to Fuzzy Set Theory and Fuzzy Logic 
 

 

47 

 
 

Figure 2.9 Output surface of fuzzy SPPB rules system with respect to Semi Tandem 
Stand time and Side by Side Stand time. 
 

Finally, Figure 2.9 shows the complete output surfaces obtained by 
varying two of the three input values across their entire respective 
ranges.  The figure clearly shows the smoothness of the output function 
to small changes. 
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2.6 Fuzzy Clustering 

One of the principal tools to mine and analyze unlabeled data is 
clustering, that is, algorithms that search for “natural structure”.  While it 
is not necessary, most clustering applications deal with sets of feature 
vectors in Euclidean d-space, in which each vector represents an object 
in some real problem domain. Chapters 4 and 5 present examples of 
fuzzy clustering in protein structure classification and microarray 
analysis, respectively.  In Chapter 3, objects to be clustered will be sets 
of terms coming from an ontology that describe a protein.  But to 
illustrate the algorithms, it is convenient to first describe clustering for 
vectors of real numbers.  We denote the set by 

} ,, ,{  n21 xxx …=X where d
k R∈x .  The question immediately arises as 

to what structures are natural.  The easy answer is that they are the ones 
we like, but of course, that glib answer is hard to define when the data 
are of high dimensionality.  Hence, assumptions must be made, and with 
each assumption, we place constraints on the groupings allowed by 
automated techniques. For example, it is completely reasonable to assert 
that points in feature space that are “close” to each other end up in the 
same cluster.  Close is normally defined by a distance metric in dR . 
Certainly the choice of distance measure strongly influences the resultant 
grouping of data. The standard Euclidean distance 

)()(),(2 yxyxyx −−= td , the dot product of the difference between 
the two vectors, favors groups of vectors that are hyperspherical. 
Different choices of distance functions or, as we will see, dissimilarity 
measures give rise to alternate definitions of closeness of objects for 
clustering approaches. 

All clustering is based on the concept of a C-partition of the data set 
X.  A partition of n data points into C clusters is defined by a partition 
matrix }{ ikuU = , where 10 ≤≤ iku  is the degree of data point 

kx belonging to cluster iA , subject to the constraint that the total degree 
of a data point belonging to all clusters being one, that is, 

 ∑
=

=
C

i
ik ku

1

. allfor 1  (2.6) 
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For simplicity, we will also call iku the degree of membership of data 

point kx  in cluster iA .  Note that in the crisp case, each kx  will be 

assigned to one and only one cluster iA .  In other words, for each k = 1, 

…, n, iku  = 1 for some i between 1 and C and jku  = 0 for all other 
cluster indices j. 

2.6.1 Fuzzy C-Means  

The Fuzzy C-Means (FCM) [Bezdek et al., 1999] is a scheme to partition 
a set of data into a predefined number of clusters taking into account the 
uncertainty of cluster assignment.  It effectively allows for sharing of 
objects between clusters.  In this approach, each cluster is represented by 
an exemplar (or prototype or cluster center). Let iv  be the prototype of 
cluster iA and let V be the set of all C cluster centers.  The objective of 
FCM is to minimize the following criterion function: 

 ( )∑∑
= =

=
n

k

C

i
ik

m
ik duVUJ

1 1

2 ,),(),( vx  (2.7) 

subject to the constraint that ∑
=

=
C

i
ik ku

1
. allfor 1   The constraint is 

necessary to guard against the trivial solution, i.e., setting all cluster 
memberships to zero. Here, the parameter m is called the fuzzifier. This 
is because larger values of m favor more "fuzzy" partitions, that is, more 
similar degrees of membership of a data point in all clusters. Performing 
this minimization leads to the following two equations expressing 
necessary conditions for a minimum. 

For point prototypes, that is, each cluster is represented by a single 
vector in the feature space, these prototypes must have the form 
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The necessary condition on the memberships values at a minimum of 
the criterion function are 
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Note that Equations 2.8 and 2.9 are coupled in the sense that the partition 
memberships are needed to compute the prototypes and the prototypes 
are required to update the memberships.  The FCM algorithm performs 
an iterative technique called Alternating Optimization (AO) where 
cluster memberships and cluster centers are alternately updated in each 
iteration.  There is a technical detail in the event that one of the data 
points coincides with a cluster center.  In that case, we assign complete 
membership of that point to the corresponding cluster and zero 
membership to all other clusters.  The algorithm can be summarized as 
follows. 

Let },...,,{ n21 xxx=X  where d
k R∈x  be the set of vectors to be 

clustered. 
Initialization:  Set  

  C, the number of clusters desired 
  m, the fuzzifier 
  ε, the convergence threshold 

                    { })0()0(
1

)0( ,, CV vv …=  an initial set of cluster centers 

                    //Note:  The )0(
iv  can be chosen randomly from  

                                             X or through other mechanisms // 
  Set t = 0 

REPEAT 
       DO FOR each k =1, …, n 
  IF d(xk,vi) = 0 for some i 
  THEN  

   set )(t
iku  = 1 and )(t

jku  = 0 for j≠i 
  ELSE  
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   Estimate )(t
iku  from Equation 2.9. 

  ENDIF 
       END FOR 
       Set t ← t+1 
  Using )1( −tU , estimate )(tV  from Equation2.8. 

             UNTIL ε<−∑
=

−
C

i

t
i

t
i

1

)1()( vv  

where ∗  is any vector norm (like Euclidean). 
//Note:  there are other stopping criteria, including number of 

iterations, but this is the most common// 
 
If the cluster memberships are required to be binary, i.e., the 

clustering algorithm is to build a crisp C-partition of X, then the above 
AO algorithm reduces to the Crisp or Hard C-Means (HCM) with the 
two steps in the UNTIL loop:  1. assign each vector to the cluster with 
the closest cluster center, and 2. compute new cluster centers as the 
means of the vectors assign to the respective clusters [Theodoridis and 
Koutroumbas, 2006]. 

Table 2.6 Fifteen point butterfly data set 

Point xi yi 
1 0 0 
2 0 2 
3 0 4 
4 1 1 
5 1 2 
6 1 3 
7 2 2 
8 3 2 
9 4 2 
10 5 1 
11 5 2 
12 5 3 
13 6 0 
14 6 2 
15 6 4 
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Example 2.4. As a simple example, consider the 15 point 2-dimensional 
data set, called the butterfly data, listed in Table 2.6 and shown 
graphically in Figure 2.10.  

0 2 4 6
-1

0

1

2

3

4

5

 
Figure 2.10 Butterfly data set for clustering. 
 

Visually, there looks like 2 clusters with a bridge point (#8) between 
the symmetric clusters.  Running the Hard 2-Means, using randomly 
chosen initial cluster centers, the final cluster memberships are displayed 
graphically in Figure 2.11, whereas the final cluster centers coordinates, 
{ (1, 2)t, (5.3, 2)t }, are shown in Figure 2.12.  The bridge point had to be 
assigned to one of the clusters, in this case, the left cluster.  The crisp 
assignment required by the HCM clearly affects the locations of the 
cluster centers. 

Next, we ran the Fuzzy 2-Means on this data with m = 2.  Figures 
2.13 and 2.14 show the fuzzy memberships and locations of the final 
cluster centers for the m = 2 case.  The bridge point now is shared 
between the two clusters with final membership of 0.5 in each. 

To show one of the properties of the FCM, namely that it converges 
to the HCM results as m approaches 1, we ran the Fuzzy 2-Means on the 
butterfly set with m = 1.25.  Figure 2.15 corresponds to fuzzy 
memberships for this case.  Memberships except for the bridge point are 
quite crisp.  That vector is still shared between the two clusters with final 
memberships almost 0.5 in each (slightly higher in the second cluster for 
this run).  The locations of the final cluster centers are in essentially the 
same place as for m = 2. 
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Figure 2.11 Hard 2-Means memberships of butterfly points by point index.  Note that the 
bridge point (#8) is assigned to cluster 1, represented by the solid line. 
 

-1 0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

 
Figure 2.12 Butterfly data and Hard 2-Means cluster centers (shown as stars). 
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Figure 2.13 Fuzzy 2-Means final memberships for m = 2 of butterfly points by point 
index.  Note that the bridge point (#8) is shared equally by the two clusters, that is 
u18=u28=0.5. 



Applications of Fuzzy Logic in Bioinformatics  
 

 

54 

-1 0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

 
Figure 2.14 Butterfly data and Fuzzy 2-Means cluster centers { (0.85, 2.0)t, (5.15, 2.0)t } 
for m = 2.  
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Figure 2.15 Fuzzy 2-Means memberships of butterfly points by point index for m=1.25.  
Note that the bridge point (#8) is again shared almost equally by the two clusters. 

2.6.2 Extension to fuzzy C-Means 

The choice of distance function actually determines the retrieved 
geometry of feature space.  Euclidean distance tends to produce clusters 
that are roughly hyper-spherical in shape.  Consider the Mahalanobis 
distance: 

 )()(),( 12
iki

t
ikikd vxvxvx −Σ−= −  (2.10) 

Here, Σi represents the estimated “fuzzy” covariance matrix for the ith 
cluster [Bezdek et al., 1999; Theodoridis and Koutroumbas, 2006].  
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Using this distance metric, which changes for each cluster, the resulting 
clusters can assume hyper-ellipsoidal shapes.  In the AO algorithm of the 
FCM, these matrices need to be estimated after the cluster centers are 
computed.  The covariance approximation equations are 
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Scaling the cluster-specific Mahalanobis distance by the dth-root of 
the determinant of Σi makes the resultant FCM algorithm, called the GK-
FCM, more conducive to find hyper-ellipsoidal shaped clusters of 
different sizes [Gustafson and Kessel, 1979; Bezdek et al., 1999]. 

 
Example 2.5. To show the advantage of picking the right distance 
measure, we constructed a data set that consists of three Gaussian clouds 
with different parameters and mixture probabilities (given by number of 
points in the “cluster”), and displayed in Table 2.7. 

Table 2.7 Parameters for Three Gaussian Clouds data set. 

Mean Vector Covariance Matrix Number of points 
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Figure 2.16 shows what it looks like if it were labeled data, i.e., if we 

have knowledge of the construction of the data set, whereas Figure 2.17 
displays the data set as a clustering algorithm would “see” it. 
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Figure 2.16 Three Gaussian clouds displayed as separate classes. 
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Figure 2.17 Three Gaussian clouds for a clustering exercise. 
 
Now, Figures 2.18, 2.19, and 2.20 show the final crisp partitions for 

the HCM, the FCM and the GK-FCM.  The HCM and the FCM use 
Euclidean distance.  The crisp labels are assigned by picking the cluster 
with maximal membership for each point.  Here, both the HCM and 
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FCM fail to find the elliptical clusters because Euclidean distance favors 
circular clusters.  The GK-FCM pretty accurately recovers the “correct” 
structure. 
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Figure 2.18 Final crisp partition of Three Gaussian Clouds from the HCM with Euclidean 
distance. 
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Figure 2.19 Final crisp partition of Three Gaussian Clouds from the FCM with Euclidean 
distance. 
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Figure 2.20 Final crisp partition of Three Gaussian Clouds from the GK-FCM with scaled 
Mahalanobis distance. 

 
We note that this variant of FCM and a similar one proposed by Gath 

and Geva [Gath and Geva, 1989] are close in both form and results to 
Gaussian Mixture Decomposition using the Expectation Maximization 
algorithm [Theodoridis and Koutroumbas, 2006]. 



Chapter 2: Introduction to Fuzzy Set Theory and Fuzzy Logic 
 

 

59 

2.6.3 Possibilistic C-Means (PCM)  

The FCM clustering algorithm ameliorates the problem of crisp 
assignment of vectors to particular clusters when the features possess 
ambiguity.  Vector memberships are shared among clusters (the 
memberships of a given vector must sum to one).  When vectors are of 
high dimension, this fuzzy partition is not only useful in finding strong 
elements in a cluster (close to binary memberships) but also for detecting 
objects that lie in an overlapped region when memberships in multiple 
clusters are close to equal.  This was used in [Pal et al., 2005] to find 
proteins that had been incorrectly annotated in the Gene Ontology (see 
Chapter 3).  However, there is no reason that memberships of a given 
feature vector should always sum to one.  This is a definition within crisp 
clustering and is required in the FCM to avoid the trivial solution (all 
memberships equal zero) in minimizing the criterion function.  As 
mentioned earlier, there are proteins that belong to multiple groups.  
Under crisp algorithms, such proteins must be placed entirely in one 
cluster. The FCM can spread the amount of belonging across clusters 
somewhat better, but still does not capture this condition.  Also, since 
features are measured values, it is often the case that errors in feature 
extraction occur, resulting in outliers, i.e., points that really do not belong 
to any cluster.  Crisp approaches have no choice but to dump them into a 
single group and fuzzy algorithms can at best force their memberships 
close to 1/C.  If the number of points being clustered is not huge, this can 
result in making noticeable changes in the cluster prototypes.   

Krishnapuram and Keller [Krishnapuram and Keller, 1993; 
Krishnapuram and Keller, 1996] found a way to relax the sum constraint 
while avoiding the trivial solution.  It was done by changing the criterion 
function, resulting in a clustering technique called the Possibilistic C-
Means (PCM).  Their criterion function is 
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where the ηi are appropriately chosen or estimated values [Krishnapuram 
and Keller, 1993; Krishnapuram and Keller, 1996]. 



Applications of Fuzzy Logic in Bioinformatics  
 

 

60 

The first term is the same as in FCM whereas the second term has the 
effect of trying to keep cluster memberships high. The necessary 
conditions to minimize Equation 2.12 now become 
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with the condition on the cluster centers identical to Equation 2.8. 
 
Example 2.6. Figure 2.21 shows the final PCM cluster centers {(1.04, 
2)t, (4.96, 2)t } for the butterfly data.  These fuzzy clusters are completely 
symmetric, possible because the constraint that the memberships for each 
point need to sum to 1 across the clusters is eliminated in the PCM.  In 
this case, the bridge point received low and equal memberships of 0.12 in 
both clusters and the cluster centers move to symmetric positions. 
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Figure 2.21  The butterfly data and final PCM cluster centers.  Symmetric membership 
functions are produced by the PCM. 
 

The PCM is very robust to outliers [Krishnapuram and Keller, 1996].  
To demonstrate this capability, a 16th point was added to the butterfly 
data set.  This point (3,10)t can be considered an outlier since it is far 
from either of the two more recognizable clusters.  This outlier causes 
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serious problems for the Hard 2-Means as seen in Figure 2.22.  The final 
crisp partition splits the data horizontally. 
 

0 2 4 6

0

2

4

6

8

10

 
 

Figure 2.22 Final crisp partition and cluster centers of the HCM on the butterfly+outlier 
data 
 

The FCM does better, generating a 0.5 membership for both the 
bridge point and the outlier.  The final cluster centers {(0.95, 2.35)t, 
(5.05, 2.35)t} are shifted vertically (refer to Figure 2.14) due to the 0.5 
outlier membership in both clusters.  Using the final FCM cluster centers 
as initialization for the PCM, as suggested in [Krishnapuram and Keller, 
1993], the Possibilistic 2-Means generates the same final cluster centers 
as in Figure 2.21 because it produces a membership of 0.01 in each 
cluster for the outlier point. 

The solution to the minimization of the PCM effectively decouples 
clusters, allowing for high or perfect belonging of a vector to multiple 
groups or for very low membership in all clusters.  For this reason, the 

iku values are referred to as typicalities instead of memberships, i.e., they 
represent how similar or typical a vector is of the prototype (cluster 
center).  The PCM tends to search for dense regions of feature space and 
can have the property that more than one cluster center, and hence the 
clusters themselves, end up identical.  This has been cited as a bad 
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property by some [Barni et al., 1996], but Krishnapuram and Keller 
argue that it is a good trait in situations where the exact number of 
clusters is unknown.  A larger number of clusters than “expected” can be 
specified as C and then identical clusters can be pruned. 

This situation is a classical issue in clustering since most clustering 
approaches require knowledge of C.  The problem, known as cluster 
validity, is normally attacked by running the algorithm on a data set 
several times, varying the number of clusters.  A number (called a 
validity measure) is calculated from the final output of each run.  While 
there are numerous examples of validity measures, most (for object data 
clouds) are functions of the closeness of points assigned to, or shared by, 
a particular cluster and the separation of distinct clusters.  The measure is 
usually maximized or minimized (depending on its form) when the 
“correct” number of compact, well-separated clusters are found.  We 
direct the interested reader to [Theodoridis and Koutroumbas, 2006] for 
the general concepts of cluster validity as well as for several examples of 
such measures for both crisp and fuzzy clustering algorithms. 

While the algorithms considered above require object data (vectors 
in dR ), some data sets have the property that only relational information 
is known.  For example, in Chapter 3, we will discuss an application 
involving the clustering of proteins described by their Gene Ontology 
annotations.  A “distance”, or more generally a dissimilarity, will be 
calculated between these sets of annotations, but these numbers are not 
derived from vectors of real features.  Hence, the data, and algorithms 
that handle it, are called relational.  Most clustering algorithms have 
relational duals.  One such variation of FCM, called Non-Euclidean 
Relational Fuzzy C-Means (NERFCM) will be developed in Chapter 5 
and applied to the problem stated above. 
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2.7 Fuzzy K-Nearest Neighbors 

In the previous section, we discussed various methods to look for 
structure in sets of unlabeled vectors.  In many applications of 
bioinformatics, like protein structure prediction, we are trying to assign 
known labels to test data.  In these cases, we assume that we have 
training sets of patterns that represent the various classes (labels) under 
consideration.  The task now is to find a mapping, called a classifier, 
from the set of new samples into the set of class labels.  As with 
clustering, there are crisp, probabilistic, fuzzy and possibilistic 
classification models.  This section defines a simple, yet powerful family 
of algorithms to dynamically build a classification mapping that will be 
used later in chapter 4.  This family is referred to as k-nearest neighbor 
(k-NN) algorithms. 

Suppose you wanted to know what the weather was going to be 
tomorrow and I said “same as today”.  This seemingly over-simplistic 
response would be surprisingly good over the long haul.  If I wanted a 
little more evidence, I might use today’s weather and that of the previous 
two days, looking for a two-out-of-three consensus.  If I found none, I 
would pick today’s condition over the more remote conditions.  Our 
simple weather example underscores the concepts in both the crisp and 
fuzzy k-NN algorithms. 

As before, suppose },...,,{ 21 nX xxx=  where d
j R∈x  is the set of 

feature vectors, except now we assume that each jx has class labels, iju , 
i = 1, …, C.  The set X is called the labeled training data for the 
classifier.  In the crisp case, iju =1 for only one class i, and is zero 

elsewhere.  This signifies that jx  represents an object sampled from 

class i.  By relaxing the binary constraint to have∑
=

=
C

i
ij ju

1
each for 1 , 

or even just requiring 10 ≤≤ iju , we produce fuzzy or possibilistic 
labels, respectively, on the training data. 

The classical crisp k-NN goes like this.  Given an input vector x to 
classify, find the closest k neighbors in the training data (pick your 
favorite distance or dissimilarity measure).  Assign x to the class with the 
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majority label among the k nearest neighbors.  Ties are broken 
arbitrarily. The simplest case is when k = 1, called the nearest neighbor 
or the 1-NN algorithm – like our first weather predictor. Perhaps 
surprisingly, Cover and Hart [1967] proved that in the limit, the error rate 
of the 1-NN converged to a value that is not more than twice the optimal 
Bayes error rate.  Of course, we don’t live in the limit case, and so, very 
little theory can be applied to predict the finite performance of the k-NN.  
However, its simplicity and decent (sometimes, very good) results has 
made it a very common vector classifier. 

In the “more sophisticated” weather predictor, a three-way tie was 
broken by picking the label (weather conditions) of the closest point.  
There have been numerous extensions to the k-NN algorithm that make 
use of the individual distances, ),()( jj dd xxx = for j=1,…,k [Dasarathy, 
1991].  Here, we show how both the distances and fuzzy (or possibilistic) 
labels are combined to create class labels for the test vector.  This 
approach will be demonstrated on a protein structure prediction problem 
in Chapter 4.  Like its crisp counterpart, the fuzzy k-NN (FKNN) 
algorithm is simple in concept.  Let kxxx ,...,, 21 be the k nearest 
neighbors of a test vector x.  The goal is to compute the membership of x 
in each class.  The formula for the membership of x in the ith class, 

)(xiu , as given in [Keller et al., 1985] is 
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where m >1 is a constant (like the fuzzifier in the FCM).  Hence, )(xiu  
is proportional to a weighted average of the inverse distances of x to each 
of its k nearest neighbors.  The weights correspond to fuzzy ith class 
labels of neighbors.  The denominator is used to scale the memberships 
for all classes so that they sum to 1.  In the crisp case, this is an inverse 
distance weighted k-NN [Dasarathy, 1991].  As with fuzzy clustering, if 
it is necessary to compute a crisp label, x can be assigned to the class 
with the largest membership. 
 
Example 2.7. Consider the situation in Figure 2.23, the star representing 
a point x along with the 6 nearest neighbors, three from class 1 (circles) 
and three from class 2 (squares).  Clearly, the crisp 6-NN would result in 
a tie.  We are using an even number of neighbors in this example only to 
drive home this fact. 

 
Figure 2.23 A point x (the star) with 6 neighbors split between class 1 (circles) and class 
2 (squares).  
 

Suppose now that the distances between x and these 6 vectors are ¼, 
½, ½, ½, 1, and 1, respectively.  If the class memberships are crisp, i.e., 1 
in the designated class and 0 in the other, then for m = 2, Equation 2.14 
produces 
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Hence, class 1 is favored, and so, if crisp assignments are required, the 
star would become a circle.  However, suppose that x1, x2, and x3 were 
not very typical members of class 1, all having class 1 memberships of 
5/8 for simplicity (memberships in class 2 of 3/8) while the other three 
remain strongly in class 2.  Then the calculations yield 
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Now, the Fuzzy 6-NN algorithm generates membership values for x that 
places it more strongly in class 2 due to the weaker confidence in the 
typicality of the class 1 points.  A crisp partition would thus make the 
star a square.  How the training data receive fuzzy labels is problem 
dependent.  Chapter 4 contains a particular application to protein 
secondary structure prediction. 

2.8 Fuzzy Measures and Fuzzy Integrals 

Many problems in decision making in general, and specifically in 
bioinformatics, can be cast as in the framework of fusion of multiple 
sources of information.  For example, doctors may request several tests 
to arrive at a diagnosis.  These tests, including patient history, all supply 
partial evidence for possibly more than one conclusion.  An expert 
diagnostician combines the results of the tests with “worth” of the 
individual assays, as well as groups of them, to support or refute 
particular conclusions.  Some tests taken individually may only provide 
limited confidence in a decision, but taken as a group greatly increase 
that support.  One of the advantages of fuzzy set theory is the wide range 
of computational mechanisms to implement such fusion of information.  
In this section we develop one of these powerful frameworks, the fuzzy 
integral.  It is used to combine partial (objective) support for a hypothesis 
from the standpoint of individual sources of information together with 
(possibly subjective) weights of various subsets of these sources of 
information. 
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2.8.1 Fuzzy measures 

The fuzzy integral is based on the concept of fuzzy measures, 
generalizations of probability measures, which in themselves will be 
shown to be effective to combine information in certain applications (see 
Chapter 3).  Consider a finite set { }nxxxX ,...,, 21= of sources of 
information.  Each xi can be a diagnostic test, the expression level of a 
certain gene, an annotation term for a gene, etc.  While only finite sets 
are considered here, the theory of fuzzy measures and fuzzy integrals can 
be extended to infinite sets (see [Grabisch et al., 2000; Wang and Klir, 
1992]). 

Let 2X denote the power set of X, i.e., the set of all subsets of X.  A 
fuzzy measure, g, is a real valued function ]1,0[2: →Xg , satisfying the 
following properties: 
 1. 1and0)( =)( =∅ Xgg  

 2. BABgAg ⊆≤  if )( )(   

Note that the normal additivity condition of probability theory is replaced 
by the weaker condition of monotonicity (property 2).  For a fuzzy 
measure g, let })({  i

i xgg = .  The mapping i
i gx → is called a fuzzy 

density function.  The fuzzy density value, ig , is interpreted as the 
(possibly subjective) importance of the single information source ix  in 
determining the answer to a particular question, perhaps the similarity of 
two genes. Fuzzy measures are quite general since they only require two 
simple properties to be satisfied.  However, it is often the case that the 
densities can be extracted from the problem domain or supplied by 
experts.  The key to using fuzzy measures involves finding ones that can 
be built out of the densities.  One of the most useful classes of fuzzy 
measures is due to Sugeno [Sugeno, 1977].  A fuzzy measure g is called 
a Sugeno measure ( λg -fuzzy measure) if it additionally satisfies the 
following property [Sugeno, 1977]: 
 3.  allFor  , = with ∅∩⊆ B AXA,B  

(B)(A)gλg(B)g(A)gB)(A g λλλλλ ++=∪  for some 1−>λ  (2.15) 
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Unless needed, the subscript λ will be omitted for simplicity.  If the 
densities are known, the value of λ for any Sugeno fuzzy measure can be 
uniquely determined for a finite set X using Equation 2.15 and the facts 

1) and 
1

=(Xg}{xX = λ

n

i=
i∪ , which leads to solving the following 

equation for λ: 
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+=+
n

i

igλλ  (2.16) 

This equation has a unique solution for λ > -1 [Sugeno, 1977]. 
 
Example 2.8. To illustrate the calculation of a Sugeno fuzzy measure, 
suppose },,{ 321 xxxX = and suppose that 2.01 =g , 3.02 =g , and 

1.03 =g  (we will see in Chapter 3 how such densities can be found in a 
bioinformatics application).  Note that the resulting measure in this case 
cannot be a probability measure because the densities, i.e., the measures 
of the singleton subsets, do not add up to 1.  Then, Equation 2.16 
becomes 
 )1.01)(3.01)(2.01(1 λλλλ +++=+  

Expanding and collecting terms, λ must be the solution of the quadratic 
equation 04.011.0006.0 2 =−+ λλ .  While there are 2 solutions, only 
one of them, λ = 3.2, is greater than -1, as guaranteed by the theory.  
Hence, the complete fuzzy measure is shown in Table 2.8. 

Table 2.8 Sugeno fuzzy measure for }x,x,{xX 321=  with densities 0.2, 0.3, and 0.1 

Subset Measure 
φ  0.0 
{x1} 0.2 
{x2} 0.3 
{x3} 0.1 
{x1, x2} 0.2+0.3+3.2(0.2)(0.3) = 0.69 
{x1, x3} 0.2+0.1+3.2(0.2)(0.1) = 0.36 
{x2, x3} 0.3+0.1+3.2(0.3)(0.1) = 0.5 
X = {x1, x2, x3} 0.36+0.2+3.2(0.36)(0.2) = 1.006 ≈ 1.0 

(we rounded the intermediate results) 



Chapter 2: Introduction to Fuzzy Set Theory and Fuzzy Logic 
 

 

69 

In Chapter 3 we describe a method to build a similarity index 
between proteins using fuzzy measures. 

2.8.2 Fuzzy integrals 

Let X be a set and let [0,1]  : →Xh  be a function that provides the 
support of a given hypothesis from the standpoint of each source of 
information, called a partial evaluation function. Suppose 

[0,1] → 2 : Xg is a fuzzy measure.  Then the Sugeno fuzzy integral is 
defined by 

 [ ] [ ])(,min(sup))(),(min(minsup)(
]1,0[

α
αExXE

AgαEgxhgxh
∈∈⊆

==∫ D  

where { }αxhxAα ≥= )(| . 

For the finite case (the case that this chapter really addresses), 
suppose )()( 1 nxhxh ≥≥"  (If this is not the case for any object 
instance, then reorder the set of information sources, X, so that this 
relation holds).  Then the Sugeno fuzzy integral can be shown to be 
[Sugeno, 1977] 

 [ ]))(),(min(max)(
1 ii

n

ig AgxhhS
=

=  (2.17) 

where { }ii xxA ,...,1= . 

The reader is referred to [Grabisch et al., 2000; Wang and Klir, 1992] 
for an extensive theoretical background on fuzzy measures and fuzzy 
integrals. 

The original definition given by Sugeno for the fuzzy integral is not a 
proper extension of the Lebesgue integral, i.e., the integral from 
Calculus, in the sense that the Lebesgue integral is not recovered when 
the measure is additive.  To avoid this drawback, Murofushi and Sugeno 
[Murofushi and Sugeno, 1991] proposed the Choquet fuzzy integral, 
referring to a functional defined by Choquet in a different context.  Let h 
be the partial evaluation function on X with values in [0, 1] and g be a 
fuzzy measure.  The Choquet integral is: 
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If X is a discrete set, the Choquet integral can be computed as 
follows: 

 ∑
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iiig AgxhxhhC

1
1 )()]()([)(  (2.18) 

where )()( 1 nxhxh ≥≥" , h(xn+1) = 0,  and { }ii xxA ,...,1= .   

It is also informative to write the discrete Choquet integral as a 
(nonlinear) weighted sum of these values in which the weights depend on 
their order.  Define 
 ( ) niAgAggδ iii 1,2,...,for  )()( 1 =−= −  (2.19) 

where we take )( 0Ag to be 0. Then 

 ∑
=

⋅=
n

i
iig xhghC

1

)()()( δ  (2.20) 

Note that, in the general case, the sum in Equation 2.20 is a nonlinear 
combinations of the values of h because the ordering of the arguments 

nxx ,...,1  depends upon the relative sizes of the values of the function h. 
 
Example 2.9. As a simple illustration, suppose that the set of information 
sources is },,{ 321 xxxX = with the Sugeno fuzzy measure specified in 
Table 2.8. For the partial evaluation function [0,1]  : →Xh , given by 

0.2  )( and  0.7,  )( , 0.9  )( 321 === xhxhxh , we calculate the Sugeno and 
Choquet fuzzy integrals.  First note that the function values are already 
sorted in descending order so that there is no need to re-order the set of 
information sources.  From Equation 2.17, the Sugeno fuzzy integral of h 
with respect to the fuzzy measure is given by 
 69.0)0.11.0()69.07.0()2.09.0()( =∧∨∧∨∧=hSg . 

Similarly, Equation 2.18 produces a Choquet fuzzy integral of 
59.0)0.1)(0.02.0()69.0)(2.07.0()2.0)(7.09.0()( =−+−+−=hCg . 
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As will be seen in Chapter 3, for particular fuzzy measures, g, the 
Choquet fuzzy integral reduces to a linear combination of order statistics. 
If the weights (thought of as a fuzzy subset of the positive integers from 
1 to n) have a linguistic interpretation, this integral has become known as 
an Ordered Weighted Average (OWA) [Yager, 1988; Yager, 1993].  The 
measures that produce these special operators are very specific in that 
they must be constant on all subsets of information sources that contain 
the same number of elements.  Hence, the full Choquet (and Sugeno) 
fuzzy integrals represent a very broad class of information fusion 
mechanisms that can be tailored to the problem at hand. 

The key to using fuzzy integrals to fuse multiple sources of 
information is to construct the fuzzy measures that specify the worth of 
all subsets of sources of information.  In Chapter 3, Sugeno measures are 
employed.  As noted above for these fuzzy measures, only densities (the 
worth of each singleton information source) need be specified.  This is 
problem dependent and we will provide examples in Chapter 3.  There 
are numerous methods to automatically learn either densities or entire 
measures if training data are available [Grabisch et al., 2000; Keller et 
al., 2000; Tahani and Keller, 1990; Keller et al., 1994; Mendez-Vazquez 
et al., 2007].  These techniques dramatically increase the applicability of 
fuzzy integrals for general information fusion. 
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2.9 Summary and Final Thoughts 

We began this chapter with a motivation as to why fuzzy models should 
be considered in bioinformatics.  With that motivation, we introduced 
some of the fundamental concepts of fuzzy set theory to form a basis for 
the applications to bioinformatics.  We defined and showed examples of 
membership functions and some of the many types of aggregation 
operators available to us to fuse partial confidences into a global 
confidence estimate. After grounding ourselves in the underpinnings, we 
successively described fuzzy relations and fuzzy logic inference, fuzzy 
clustering, the fuzzy k-nearest neighbors, fuzzy measures, and fuzzy 
integrals.  These topics were selected both to provide a sampling of the 
breath of fuzzy models and to provide the notation and mathematics for 
applications covered in subsequent chapters of this book.  We tried to 
give the readers an appreciation for the beauty and the utility of fuzzy set 
theory and fuzzy logic.  Clearly, we have only scratched the surface of 
fuzzy models and hope that our initiation engenders a desire for further 
study. 
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Chapter 3 

Fuzzy Similarities in Ontologies 

3.1 Introduction 

In philosophy, ontology is a branch of metaphysics that studies “the 
reasoning (logos) about being (ontos)” [http://en.wikipedia.org/ 
Ontology].  As opposed to this theoretical meaning, in computer science, 
an ontology is a pragmatic representation of a particular area of 
information.  Specifically, an ontology consists of a set of concepts, 
regarding the area of information, and the relations between them.  
Hence, this pragmatic representation can be used to facilitate knowledge 
sharing, retrieval, and discovery in the area represented by the ontology.  
An ontological representation serves two purposes: (1) it is used to create 
controlled vocabularies, and (2) it encodes common knowledge of the 
area. 

Among the best known bio-ontologies are: RiboWeb 
[http://riboweb.stanford.edu/riboweb/], EcoCyc [http://ecocyc.org], the 
ontology for molecular biology (MBO) [Schulze-Kremer 1998], the 
Gene Ontology (GO) [http://www.geneontology.org], TAMBIS (TaO) 
[Baker et al., 1998] and the KEGG Ontology (KO) 
[http://www.genome.jp/kegg].  In addition, the MeSH ontology 
[http://www.nlm.nih.gov/mesh/] is employed in searching for biomedical 
publications and gene product annotation [Perez et al., 2004]. 

Compared to other bio-ontologies, the GO has a narrower scope 
[Stevens et al., 2000], which centers on the role of a gene product in an 
organism instead of describing molecular biology as a whole.  However, 
the GO has emerged as the ontology of choice in many bioinformatics 
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applications such as automatic annotation of gene function [Khan et al., 
2003; Martin et al., 2004], microarray analysis [Khatri et al., 2004; Al 
Shahrour et al., 2004], and gene family clustering [Speer et al., 2004; Pal 
et al., 2005].  Since all the examples from this chapter will be based on 
GO, we will describe it in more detail in what follows. 

The Gene Ontology has three branches (hierarchies) (see Figure 3.1). 

cAMP catabolism
GO:0005198

gene ontology
GO:all

molecular function
GO:0003674

biological process
GO:0008150

cellular component
GO:0005575

GMP catabolism to IMP
GO:0005201

cellular process
GO:0009987

cell communication
GO:0007154

cell surface receptor linked
signal transduction

GO:0007155

extracellular
GO:0005576

extracellular matrix
GO:0005578

galactosylceramide metabolism
GO:0005581

 
Figure 3.1 Partial view of the Gene Ontology (GO) hierarchy. 
 

The first branch, “molecular function”, is centered on the function of 
a gene product. The second one, “biological process”, is related to the 
processes in which a gene product may be involved.  The third branch, 
“cellular component”, describes cellular location and structure.  In the 
GO, the concepts are linked by two types of relations: “is-a” and “part-
of”.  From similarity stand point, it is obvious that the two types of 
relations are quite different.  While all the descendents of a term are quite 
similar in the “is-a” case, they are usually quite dissimilar for the “part-
of” relation.  In this chapter we ignore the “part-of” case and we will 
consider that all the relations between terms are of type “is-a”.  The GO 
contains a high level of detail [Stevens, 2000] and is updated on a daily 
basis.  As of June 2007, it has about 23,200 concepts. 

Ontologies have been used as controlled vocabularies for knowledge 
sharing and retrieval in many areas.  As opposed to plain text, the GO is 
more effective in indexing gene products, resulting in improved database 
searches.  For example, when searching for genes involved in cell death 
using the GO term "cell apoptosis" (GO identifier GO:0006915), we are 
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able to retrieve genes involved in the apoptosis process such as BCL2 
and RAF1, that could not have been related using a regular (syntactical) 
database search.  The advent of the world-wide web increased the need 
for knowledge sharing and interoperability.  In this direction, the Web 
Ontology Language (OWL) [http://www.w3.org/2004/OWL/] aims at 
facilitating the communication (information exchange) between various 
web agents. 

The knowledge encoded in an ontology has been used in computer 
sciences such as artificial intelligence (AI) and computational 
intelligence (CI).  The distinction that we make here between AI and CI 
is (see Chapter 2, Section 2.1) that while the former uses primarily 
symbolic algorithms, the latter employs numerical algorithms.  In AI, an 
ontology is viewed as a set of symbolic rules in the form “A is-a B” (e.g., 
“a protein tyrosine phosphatase is-a protein phosphatase” [Wolstencroft 
et al., 2005]) or “A part-of B” (“ATP binding motif is part-of ABC 
transporter”).  In some approaches, ontologies are related to predicate 
logic and are usually implemented using symbolic languages such as 
LISP or PROLOG [Horrocks et al., 1998].  In other approaches, 
ontologies are developed using description logic (DL) and the inferences 
are performed by dedicated reasoners.  This approach has been used, for 
example, to classify protein phosphatases [Wolstencroft et al., 2005].  
Although rigorous, this technique has difficulty in dealing with imprecise 
knowledge.  As we have seen in Chapter 1, there are various biological 
problems where a fuzzy logic approach may be more suitable than a 
traditional approach.  In this chapter we will show several situations 
where fuzzy logic can be used in conjunction with ontologies. 

There are three aspects of the relation between fuzzy logic and 
ontologies from a CI perspective.  First, we can apply known fuzzy logic 
algorithms such as fuzzy clustering [Pal et al., 2005] and fuzzy measure 
theory [Popescu et al., 2006] to objects described by ontology concepts.  
Second, an ontology may be used to define fuzzy matches between 
concepts based on their similarity.  As a consequence, we can use fuzzy 
matches to retrieve information from databases [Andreasen et al., 2003] 
or to build fuzzy rule systems where the rules are fired ontologically 
instead of using membership functions [Popescu et al., 2007].  Third, an 
ontology itself may be fuzzy.  Fuzzy ontologies have been used in text 
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mining [Tho et al., 2006] and text summarization [Lee et al., 2005].  In a 
fuzzy ontology an object may have different degrees of memberships in 
various classes (concepts).  This approach is usually required for numeric 
data where numbers have to be mapped to concepts (such as 198 cm to 
concept "tall").  In this chapter we do not discuss fuzzy ontologies. 

In the CI approach, the classification and knowledge discovery 
algorithms are based on distance between objects.  Usually, the distance 
is calculated from a set of numeric attributes (features) of the objects 
such as molecular weight or number of nucleotides in the sequence.  
However, this distance computation becomes more complicated when 
the object attributes are symbolic (not numeric).  Here we assume that 
the objects, in our case gene products, are described by concepts from an 
ontology.  The key to this CI approach is the quantification of the 
similarity between concepts based on their relation in a common 
ontology.  Since distance d and similarity s are dual concepts we will use 
them interchangeably.  Once the similarity between two concepts is 
evaluated to a number (between 0 - dissimilar, and 1- identical) then a 
variety of algorithms can be applied. 

In the rest of the chapter we will define a number of fuzzy similarity 
measures and describe several ontological data mining algorithms and 
their applications in bioinformatics.  The data mining algorithms 
presented here are intended to be practical applications of the fuzzy logic 
concepts introduced in Chapter 2. 

3.2 Definition of Ontology-Based Similarity  

Similarity is a central concept in knowledge discovery.  The relations 
between objects are quantified by their similarity.  The computation of 
similarity depends on the representation of the objects.  In our case, the 
objects (gene products) are represented (annotated) using GO terms.  
That is, a gene product G is represented as a set of N GO terms as 
G={T1,...,TN}. 

The computational use of the GO requires a definition of similarity 
12s  (or dissimilarity) between two terms 1T  and 2T  from the ontology.  

There are two main approaches to computing term similarity.  One 
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approach employs aspects of the topological arrangement of the terms in 
the ontology [Jiang, 1997] such as the path between concepts, the density 
of child-concepts of a node or the depth of the concepts in the hierarchy.  
Related topological approaches can be found in [Andreasen et al., 2003] 
and [Joslyn et al., 2004].  A simple path-based computation of term 
similarity is shown in Figure 3.2.  
 

T3

T1 T2

0.9
0.4

0.9
0.4

 
 
Figure 3.2 Example of path-based computation of the similarity (membership) between 
two GO terms.  Note that the thin arcs represent the weight assignment process while the 
thick arcs represent the ontological relation “is-a”(GO is a directed acyclic graph).  Here, 
the similarity between T1 and T2 is 0.9*0.4=0.36. 
 

The similarity between two ontology terms 1T  and 2T , 12s , is 
computed as [Andreasen et al., 2003]: 
 ∏

∈

=
i

i Pj
ijP

ws
}{12 max , (3.1) 

{ iP } is the set of all possible paths connecting 1T  and 2T  in the GO and 
wij is the weight assigned to the arc j from path Pi.  In the example from 
Figure 3.2, the similarity between 1T  and 2T  is 36.04.0*9.0s12 == .  
Here, we consider only two types of weights: specialization weights 
(upward from the ancestor node to the descendent node) with a value of 
0.9 and generalization weights (downward from the descendent to the 
ancestor) with a value of 0.4.  The weights were assigned somewhat 
arbitrary here, but they can be computed based on term co-occurrence 
data [Lau, 2007].  We note that the weights themselves have an opposite 
direction from the process they represent.  For instance, although the 
specialization relation runs downward (thick arrows in Figure 3.2), the 
specialization weights (with value 0.9) run upward.  The difference 
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between generalization (“serine-threonine kinases are kinases”) and 
specialization (“kinases are serine-threonine kinases”) is that while the 
first holds entirely (high membership value, arbitrarily chosen as 0.9 in 
Figure 3.2) the latter holds only partially (“medium” membership value, 
arbitrarily chosen as 0.4 in our case).  As can be observed from Equation 
3.1, the above measure is not symmetric. Hence, it is not, strictly 
speaking, a similarity.  However, this approach was found to be useful in 
modeling the fuzzy memberships in an ontological fuzzy rule system 
[Popescu et al., 2007] (see Section 3.8). 

Another approach to computing term similarity is based on 
information content (IC) [Resnik, 1999].  In this approach, each term 
receives a weight (density) based on its IC.  The information content is 
determined by counting the number of times ni the term iT appears in a 
set of documents (corpus) from the domain that the ontology represents.  
Then the information content, IC( iT ), is computed as: 
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where Ni is the number of ontology nodes that have node i as ancestor 
and N is the total number of terms from the ontology.  We note that in 
contrast to previous definitions of IC [Resnik, 1999], the one above 
produces values in [0,1].  As a consequence, the root node (term denoted 
“GO:all” in Figure 3.1) has IC=0 and any term i that is a leaf node (does 
not have any child nodes) and appears just once in the corpus (that is, 
ni=1) has IC=1.  In addition, the information content of a child node is 
greater than that of any of its parent nodes.   

Employing the term information content, the similarity 12s  between 
two ontology terms 1T  and 2T  may be defined as [Resnik, 1999]: 



Chapter3: Fuzzy Similarities in Ontologies 
 

79 

 }),{(),( 212112 TTNCAICTTs = , (3.3) 

that is, the information content of the nearest common ancestor (NCA), 
of the two terms in the ontology tree.  The disadvantage of the above 
definition is that in some cases it produces inconsistent results (see 
Figure 3.3). 
 

T 4

T 2

T 3

T 1
 

Figure 3.3 Example of inconsistent result of the information content method as defined in 
[Resnick 1999].  In this case, s13(T1,T3)=s23(T2,T3) since they have the same NCA, T4.  
However, intuitively, s13 should be smaller than s23. 
 

A possible solution to the above problem [Jiang, 1997] consists of a 
combined topological and information-content approach.  In this 
approach, the weight wij between the term Ti and term Tj, is calculated as 
the difference of their information content IC(Ti)-IC(Tj).  Another 
solution [Lin, 1998] is to normalize s12 from Equation 3.3 using the 
information content of the two terms 1T  and 2T  as  
 

 
)()(
}),{(2),(

21

21
2112 TICTIC

TTNCAICTTs
+

= , (3.4) 

where )( 1TIC  and )( 2TIC  are the IC of the two terms and 
}),{( 21 TTNCAIC  is the IC of their nearest common ancestor.  It can be 

seen that for this case, in Figure 3.3, 2313 ss <  since )()( 12 TICTIC <  
due to the definition of IC (Equation 3.3). 
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3.3 Set-Based Similarity Measure 

Consider two gene products, 1G  and 2G , represented by collections of 
concepts (annotations) from an ontology O as },...,,...,{ 11111 nj TTTG =  

and },...,,...,{ 22212 mj TTTG = , OTij ∈ , }2,1{∈i .  In addition, suppose 

each term OTij ∈  from the two sets is assigned a weight ]1,0[∈ijg that 
in our case is its information content, IC.   

Our goal is to define a similarity measure between 1G  and 2G , 
),( 21 GGs .  The similarity, s, can be computed using a set or a vector 

space approach.  Let N be the number of concepts in O.  In the vector 
space approach, each gene product iG is described by a vector N

i R∈v , 
where ijv is 1 if jT is present in the iG  representation and 0 else.  If the 
number of concepts in the ontology O is large (N>>0) and the cardinality 
of the annotation set (m and n) is small, the vectors iv become long and 
sparse, making subsequent use of the vectors in algorithms like 
clustering problematic.  This is especially true in the case of gene 
products annotation where the typical annotation contains less than 10 
concepts while the GO (in June 2007) has 23,200 terms. 

An alternative way to compute the similarity is to consider a set 
approach in which each gene product is represented by a set of terms as 
mentioned above.  There are two main set approaches to computing the 
similarity s: a “pair-wise” aggregation and the “bag of words”. 

3.3.1 Pair-wise aggregation 

In the “pair-wise” approach, the similarity s is computed by aggregating 
the ontology pair-wise terms similarities, ),( 21 jiij TTs , for the pairs of all 
terms from G1 and G2 respectively.  For the sake of notations, we relabel 
the values {sij | i=1,...,n, j=1,...,m} as {S1,...,Sk,...,Smn}.  In [Pal et al., 
2005], a generalized pair-wise similarity was defined using Ordered 
Weighted Average (OWA) [Yager 1996] operators as: 

 ∑
=

=
nm

k
kkOWA SwGGs

1
)(21 ),( , (3.5) 
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where S(k) denotes a reordering of the pair-wise term similarities Sk such 

that S(1)≥S(2)… ≥S(mn), and w is a weight vector with ∑
=

=
nm

k
kw

1
1.  From the 

above formula we obtain the average pair-wise similarity [Lord et al., 
2003] by taking wi=1/nm, i=1,…,nm.  Similarly, the maximum pair-wise 
similarity is obtained by setting w1=1 and wi=0, i=2,…,nm.  The OWA 
similarity requires the following normalization: 

 
)},(),,(max{

),(),(
2211

21
21 GGsGGs

GGsGGs
OWAOWA

OWA= . (3.6) 

Without normalization, the average is not a true similarity (since 
s(G1,G1)<1).  OWA aggregation is very general, providing all linear 
combinations of order statistics.  Pal at al. [2005] proved that this 
normalization produced valid similarity numbers for a subset of all 
possible weight vectors.  We note that the weights for the average 
(wi=1/nm) were not among the subset from Pal's proof.  However, in our 
experience, normalizing the average using Equation 3.6 produces 
consistent similarity values.  The maximum pair-wise similarity tends to 
overestimate the similarity s(G1,G1) since it is enough that the two gene 
products share one GO term for the similarity to be 1.  This is especially 
bad for a multi-domain protein.  If two multi-domain protein share 
functions (hence GO terms), their similarity will be 1, making impossible 
any discrimination among them.  The main drawback of the pair-wise 
approach is slow computational speed due to consideration of the all nm 
combinations of concepts. 
 
Example 3.1.  Consider two human anti-apoptotic genes BAG1 and 
BCLW, both members of the BCL2 gene family.  Since the two genes 
are from the same family and have a common function we expect that 
they exhibit some reasonable degree of similarity.  However, the 
sequence similarity (computed using the Smith-Waterman algorithm) in 
the case of the two genes is about 0.03 and BLAST does not detect any 
significant similarity.  Hence, using just the sequence similarity we 
would say that the two genes are not related.   

The GO annotations for BAG1 (four terms) and BCLW (three terms) 
are shown in Tables 3.1 and 3.2, respectively.  In addition to the ID of 
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each GO term, we show its type (i.e. GO branch: "M" for "molecular 
function", "P" for "biological process", "C" for "cellular component", see 
Figure 3.1), its evidence type (the way the annotation was performed: 
TAS-traceable author statement, IPI-inferred from physical interaction) 
and its calculated IC (using Equation 3.2). 

Table 3.1 GO annotation set for BAG1_HUMAN 

Name 

receptor signaling 
protein activity cytoplasm anti-apoptosis

cell surface receptor 
linked signal 
transduction 

Term ID GO:0005057 GO:0005737 GO:0006916 GO:0007166 
Evidence TAS TAS TAS TAS 
Type F C P P 
IC 0.49 0.10 0.52 0.29 

Table 3.2 GO annotation set for BCLW_HUMAN 

Name protein binding anti-apoptosis spermatogenesis 
Term ID GO:0005515 GO:0006916 GO:0007283 
Evidence IPI TAS TAS 
Type F P P 
IC 0.22 0.52 0.49 

The pair-wise similarity for the GO terms from the two above 
annotation sets is given in Table 3.3, Table 3.4 and Table 3.5. 

 

Table 3.3 Pair-wise similarity for the GO terms from the BAG1 and BCLW annotation 
sets (used in numerator of Equation 3.6) 

BAG1 ⇓, BCLW⇒ GO:0005515 GO:0006916 GO:0007283 
GO:0005057 0.35 0 0 
GO:0005737 0 0 0 
GO:0006916 0 1 0.05 
GO:0007166 0 0.25 0.28 



Chapter3: Fuzzy Similarities in Ontologies 
 

83 

Table 3.4 Pair-wise similarity for the GO terms from the BCLW annotation set (used in 
the denominator of Equation 3.6) 

 GO:0005515 GO:0006916 GO:0007283 
GO:0005515 1 0 0 
GO:0006916 0 1 0.05 
GO:0007283 0 0.05 1 

Table 3.5 Pair-wise similarity for the GO terms from the BAG1 annotation set (used in 
the denominator of Equation 3.6) 

 GO:0005057 GO:0005737 GO:0006916 GO:0007166 
GO:0005057 1 0 0 0 
GO:0005737 0 1 0 0 
GO:0006916 0 0 1 0.25 
GO:0007166 0 0 0.25 1 

Since BCLW and BAG1 share one annotation term (GO:0006916), 
the maximum pair-wise similarity, sMax=1.  The average similarity is: 

47.0
}34.0,28.0max{

16.0
)},(),1,1(max{

),1(

==

=
BCLWBCLWsBAGBAGs

BCLWBAGss
OWAOWA
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where, for example, ),1( BCLWBAGsOWA  is calculated using Equation 
3.5 with a weight vector {wi=1/12}i=1,12.  As mentioned above, smax 
overestimates the similarity between the two genes while save is 
underestimating it by considering all the combinations of terms.  To 
obtain an intermediate value between the two we can use, for instance, an 
"al least 2" OWA operator that has the weights w1=0.5, w2=0.5 and 
{wi=0}i=3,12.  In this case the similarity becomes: 

67.0
1
67.0

}1*5.01*5.0,1*5.01*5.0max{
35.0*5.01*5.0
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3.3.2 Bag of words similarities 

In the “bag of words” approach, the similarity measure between two gene 
products 1G  and 2G  considers the two sets of concepts directly.  Various 
“bag of words” methods have been described in the literature [Manning 
et al., 2001].  Here, we mention a few of them: 
       - Jaccard similarity: 
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        - Set cosine similarity: 
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        - Dice similarity: 
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In the above formulas, |G| denotes the cardinality of the set G, while 
∩  and ∪  are standard set intersection and union.  Although the "bag of 
words" similarities are faster than the pair-wise ones, they have the 
disadvantages that they do not consider the term relatedness and 
importance (weight).  While they can be fuzzified to include the 
importance (information content) of the terms, they can not account for 
their semantic content (the term meaning, i.e. the relations between 
terms).  For instance, the fuzzy Jaccard similarity is defined by: 
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where )( iTIC  represents the information content of term Ti. 
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Example 3.2.  For the same two genes from Example 3.1, BAG1 and 
BCLW, the above similarities are: sJ = 0.17, sC = 0.29 and sD = 0.28.  The 
fuzzy Jaccard is sFJ = 0.25 (using the information content row, IC, from 
Table 3.1 and 3.2).  All the above values are essentially similar, 
indicating that the two genes are somewhat related but at fairly low level.  
This is true, since both genes are in the same family (BCL2) and they 
both have a anti-apoptotic (against death) role in the cell.  The fuzzy 
Jaccard similarity is 50% higher than the crisp one indicating that the 
common function (anti-apoptosis) of the two genes is annotated by a 
term that has a somewhat high IC (0.52).  

The greatest disadvantage of the bag similarities is that they do not 
consider the relations between terms.  As a consequence, these 
similarities are not informative when the number of terms in the 
annotation set (m and n, respectively) is small and the ontology is large.  
In this case, there is a high chance of having empty intersection between 
the two annotation sets, that is ∅=∩ 21 GG , resulting in a zero 
similarity.  In addition, even in the fuzzified case, the context of the term 
(how important a term is as compared to the others in the annotation set) 
is not considered since a term could have a different contribution to 
similarity depending on the annotation set. 

To address two of the above problems (IC and context) in [Popescu et 
al., 2006] we proposed a fuzzy measure similarity (FSM).  FMS is able 
to account for information content and to consider the term context, as 
illustrated in the following section.  Furthermore, the augmented FMS 
(AFMS) avoids the zero similarity problem by considering the relations 
between terms as given by the related ontology (the GO in our case).  We 
note that the augmented fuzzy Jaccaard could also address the IC and the 
zero symilairty problems but not the context one. 

3.4 Fuzzy Measure Similarity 

The fuzzy measure similarity (FMS) between two sets, G1 and G2, of 
ontology terms is defined as [Popescu et al., 2006]: 
 

 
2
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where g1 and g2 are Sugeno measures (see Chapter 2, Section 2.7.1) 
defined on G1 and G2 respectively.  Here, the fuzzy densities that 
determine the measures are given by the information content of the 
terms, i.e., nii

i TICg ,...,11
1 )(}{ == and mjj

j TICg ,...,12
2 )(}{ == . 

 
Example 3.3. Consider the same genes from example 3.1, BAG1 and 
BCLW.  To make the calculation less trivial we replace the term 
GO:0007283 by the term GO:0005057 in the BCLW annotation set.  
Now, the two genes share two terms, hence their Jaccard similarity is 0.4 
indicating a medium-low level of similarity.  The Sugeno measure 
parameters for the densities associated with the genes are calculated by 
solving (λ-0.49)(λ-0.1)(λ-0.52)(λ-0.29)=1-λ, resulting in λ1=-0.67 and 
(λ-0.22)(λ-0.52)(λ-0.49)=1-λ, resulting in λ2=-0.52 , respectively.  The 
measure of the intersection in the BAG1 context is 
g1(IC(GO:0006916,GO:0007283))= IC(GO:0006916) + 
IC(GO:0007283)+λ1*IC(GO:0006916)*IC(GO:0007283)=0.52+0.49-
0.67*0.52*0.49=0.83, while in the BCLW context is 
g2(IC(GO:0006916,GO:0007283))=0.52+0.49-0.52*0.52*0.49=0.88.  
While the two fuzzy measures differ by only 5% here, it is apparent that 
they could be very different if, for instance, a term with very high IC 
would be present in one of the annotation sets.  Finally, the FMS in this 
case is sFMS=0.5(0.83+0.88)=0.85, indicating a high level of similarity. 
 

Although FMS accounts for the term context, it has a similar problem 
to the “bag of words” methods: if the intersection of the sets is empty the 
measure is not informative (because the measure of the empty set is 0).  
To deal with this problem, we augment the initial annotation set to 
ensure that the intersection is non-empty.  

3.5 Fuzzy Measure Similarity for Augmented Sets of Ontology 
Objects 

The approach taken in [Popescu et al., 2006] is to augment each 
annotation set with the nearest common ancestor (NCA) of every pair 

),( 21 ji TT , called T1i,2j.  The augmented sets become: 
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 }{ 2,111 jiTGG ∪=+  and }{ 2,122 jiTGG ∪=+  (3.12) 

and the resulting augmented intersection is: 

 }{][][][ 2,1212121 jiTGGGGGG ∪∩=∩=∩ +++ . (3.13) 

Using this new intersection, +∩ ][ 21 GG , the augmented FMS (AFMS), 
denoted by sAFMS , is defined as: 

 
2

)]([)]([),( 212211
21

++++ ∩+∩
=

GGgGGgGGsAFMS , (3.14) 

where +
kg  is the fuzzy measure computed on +

kG , k=1,2.  In fact, the 
intersection set will contain the NCA’s of all term pair, but they will 
have different contributions to the similarity depending on the context of 
each annotation set. 

3.6 Choquet Fuzzy Integral Similarity Measure 

The Choquet integral (see Chapter 2, Section 2.7.2) is a nonlinear 
method of combining sources of information (annotation terms in our 
case) and the reliability of these information sources.  The underlying 
hypothesis is that annotation uncertainty (reliability) should be included 
in the calculation of the similarity of the two gene products.   

In the case of the Gene Ontology, the uncertainty is related to the 
source of the information that supports the annotation (see http://www. 
geneontology.org/GO.evidence.shtml).  Several types of evidence are 
shown in Table 3.6.  The GO annotations are assigned either manually by 
its curators based on published data, or automatically by specialized 
software based on various database information.  Obviously, the 
annotations assigned based on published experiments, tagged as 
"Traceable Author Statement" (TAS), are more reliable than the ones 
inferred using automatic annotation software, labeled as "Inferred from 
Electronic Annotation" (IEA).  In order to use the evidence types in the 
Choquet integral, we attach numeric confidence (reliability) values, c, to 
the evidence types.  Here, the numeric confidence values are chosen 
somewhat arbitrarily, the only condition being that they obey the 
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intuitive relations between annotation sources, such as 
cTAS>cIPI>cIEA>cND.  However, the Choquet integral framework allows for 
the computation of the above numeric values given training data in the 
form of target similarities for a set of gene products. 

Table 3.6 Several types of evidence used in GO annotation 

Traceable 
author 

statement 

Inferred 
from 

sequence 
similarity 

Inferred 
from 

electronic 
annotation 

Inferred 
from pair-

wise 
interaction 

Not 
documented 

TAS ISS IEA IPI ND 

 
We want to compute the similarity of the same two gene products 

},...,,...,{ 11111 ni TTTG =  and },...,,...,{ 22212 mj TTTG =  taking into 
account the related confidence of the term evidence 

},...,,...,{ 11111 ni cccc =  and },...,,...,{ 22212 mj cccc = .  The confidence 

(reliability) of a pair of terms, ),( 21 jiij TTc , is computed as 
),(),( 2121 jjjiij ccfTTc = , where f can be the maximum, average, or 

minimum operator and c1i and c2j are the confidences of assigning the 
annotations T1i and T2j, respectively.  To simplify the notation we relabel 

),( 21 jik TTT =  for some i and j and its related confidence 

),( 21 jiijk TTcc =  where k=1,…,nm.  Then, the Choquet similarity is 
computed as follows: 

 [ ] )()()(),(
1

)1()(21 i

nm

i
iiCho SgTsTsGGs ⋅−= ∑

=
+ , (3.15) 

where the pair-wise similarity values s(Tk) are reordered so that 
)()()( )()2()1( nmTsTsTs ≥≥≥ , 0)( )1( =+nmTs , { })()1( ,, ii TTS =  and g 

is the fuzzy measure generated by the set of fuzzy densities {cij}.  An 
intuitive representation of the Choquet integral is shown in Figure 3.4. 
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Figure 3.4 Intuitive representation of the Choquet integral.  If T(i) were real numbers then 
the integral, the area under the curve s(T) is calculated as [ ] )( )(

1
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this case, the contribution of T(i) to s(T(i)) is calculated as the measure of the intervals [T(i-

1),T(i)], that is T(i)-T(i-1). However, since T(i) represent pairs of ontology terms with 
associated uncertainties c(i), then one has to employ a fuzzy measure g to compute the 
contribution of T(i) as { }( ) { }( ))1()1()()1( ,,,, −− ii TTgTTg .  Then the integral can be 
written as [ ] )()()( )(

1
1 i

nm

i
ii TsSgSgC ⋅−= ∑

=
−

 , which is equivalent to Equation (3.15). 
 
Example 3.4.  For the same two genes from the previous examples, the 
ordered pair-wise term similarities (from Table 3.3) are 

}0,0,05,0,0,0,0,8,0.25,0.01,0.35,0.2{)}({ )( =iTs .  Considering 
(arbitrarily) cTAS=0.8 and cIPI=0.5, the corresponding pair-wise 
reliabilities (combined using product) are 

0.4,0.4} 0.64,0.64,0.64, 0.64,0.64, 0.64, 0.64, 0.64, 0.4, {0.64,}{ )( =ic  
resulting in λ=-0.99.  Then, the Choquet similarity of BAG1 and 
BCLW1 is: 

 
.74.0)05.0.0(99.0)05.025.0.0(97.0

)25.028.0(92.0)28.035.0(78.0)35.01(64.0
=−+−+

−+−+−=Chos
 

where, for example, g(S2)=0.64+0.40.99*0.64*0.4=0.78.   
This value (0.74) is smaller than that generated by FSM (0.85, see 

Example 3.3) because it includes in its calculations the reliability of the 
annotations.  In addition, the value given by the Choquet similarity is 
between the average (0.47, underestimated) and maximum (1, 
overestimated) and depends on the confidence values assigned to the 



Applications of Fuzzy Logic in Bioinformatics 
 
90 

sources of annotation.  As the annotations become more reliable (hence 
the term confidence increases), the similarity between two gene products 
increases.  Finally, the Choquet will be equal to the average similarity if 
all terms have equal reliability. 

3.7 Examples and Applications of Fuzzy Measure Similarity Using 
GO Terms 

3.7.1 Lymphoma case study 

In this section we introduce a case study used throughout this book 
that consists of 30 genes, most of them present on a methylation cDNA 
microarray constructed at the University of Missouri-Columbia to 
investigate lymphomas in humans.  Lymphoma is a hematological 
neoplasm produced by mutated lymphocytes.  Lymphocytes make up 
about a third of the white blood cells and are produced in the lymphatic 
tissue (such as lymph nodes, spleen, thymus and tonsils). These cells 
play an important role in the body immune system.  Traditionally, 
lymphomas are classified as Hodgkin’s and non-Hodgkin’s.  In fact, 
there are many types of lymphoma, each type being related to a given 
type of lymphocyte (helper T cells, killer T cells and B cells) and its 
developmental stage.   

 

Table 3.7 Case study genes, denoted as GD30, used in lymphoma investigation. 

No. Gene 
Name 

Gene Description AA 
length 

GeneBank 
Locus ID 

1 RAF1 v-raf-1 murine leukemia viral oncogene homolog 1 274 NM_002880 
2 ANXA1 annexin A1 193 NM_000700 
3 B2L10 BCL2-like 10 (BCLL10) 175 NM_020396 
4 BAG1 BCL2-associated athanogene 198 NM_004323 
5 BCLW BCL2-like apoptosis regulator (BCL2L2) 228 NM_004050 
6 BFL1 BCL2-related protein A1, hemopoietic-specific 

early response (BCL2A1) 
239 NM_004049 

7 SOCS2 suppressor of cytokine signaling 2 166 NM_003877 
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8 BNIP1  195 NM_001205 
9 BCL2 B-cell CLL/lymphoma 2 233 NM_000633 
10 COF1 Cofilin (CFL1) 920 NM_005507 
11 ASC Apoptosis-associated speck-like protein 160 NM_013258 
12 BCL10 B-cell CLL/lymphoma 10 198 NM_003921 
13 BCLF1 Bcl-2-associated transcription factor 1 (BCLAF1) 277 NM_014739 
14 BIK Bcl-2-interacting killer (Apoptosis inducer NBK) 351 NM_001197 
15 BIM Bcl-2-like protein 11 (Bcl2-interacting mediator of 

cell death) (BCL2L11) 
680 NM_006538 

16 CASP3 caspase 3, apoptosis-related cysteine peptidase 281 NM_004346 
17 CD2 CD2 antigen (p50), sheep red blood cell receptor 168 NM_001747 
18 P73L Tumor protein p73-like, oncogene 326 NM_003722 
19 TNFSF10 Tumor necrosis factor ligand superfamily member 

10 
375 NM_003810 

20 BAD Bcl2-antagonist of cell death 313 NM_001901 
21 FOSL2 Fos-related antigen 2 479 NM_005253 
22 CD14 Monocyte differentiation antigen CD14 precursor 300 NM_000591 
23 GAS2 Growth-arrest-specific protein 2 882 NM_005256 
24 CASP8 caspase 8, apoptosis-related cysteine peptidase 650 NM_001228 
25 CD38 Lymphocyte differentiation antigen CD38 393 NM_001775 
26 AHR Aryl hydrocarbon receptor precursor 2511 NM_001621 
27 FAF1 FAS-associated factor 1 650 NM_007051 
28 P53 Cellular tumor antigen p53 (Tumor suppressor p53) 393 NM_000546 
29 FAS Fatty acid synthase (TNFRSF6) 2511 NM_000043 
30 PAX3 Paired box protein Pax-3 479 NM_000438 

 
Approximately 54,000 new cases of non-Hodgkin’s lymphoma are 

diagnosed annually in the US [Guo et al,. 2005].  Microarray technology 
has been used to improve both the accuracy of lymphoma classification 
and to identify oncogenic changes [Heisler et al., 2005].  A CpG island 
(CGI) sequence library [Heisler et al., 2005] containing 8,544 clones has 
been designed for studies of DNA methylation status (methylation cDNA 
microarrays).  Methylation microarrays were used for detecting 
methylated genes in lymphoma [Guo et al., 2005] and other types of 
cancers [Huang et al., 1999].  Recent studies [Gopisetty et al., 2006] 
have shown that DNA methylation is related to many cancers by 
silencing the genes involved in the apoptotic (cell death) pathway.   
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Cancer cells avoid apoptosis (death) by a number of mechanisms that 
include increased expression of anti-apoptosis proteins (cell do not die) 
and decreased expression (silencing) of tumor suppressor genes.  

The set of 30 genes (see Table 3.7), henceforth denoted as GD30, are 
involved in cell death (apoptosis). 

The genes in the first set (lines 1-10 in Table 3.7) are anti-apoptotic, 
that is, their expression corresponds to cell survival.  The genes in the 
second set, (lines 11-20), are pro-apoptotic, that is, their expression 
signals cell death.  The genes in the third set, (lines 21-30), are involved 
in apoptosis but their Gene Ontology annotations do not specify if they 
are anti- or pro-apoptotic.  Although the above classification is somewhat 
simplistic, we assume it to be correct for the sake of illustrating the 
algorithms described in this book.  For the GD30 genes we gathered the 
following data: 
 -gene name 
 -gene description 
 -gene amino acid (AA) sequence 
 -Gene Ontology (GO) terms.  For each term we extracted: 
  -term name 
  -term GO code 
  -term GO branch (molecular function-F, biological process-P, 

cellular component-C) 
  -term evidence (Traceable Author Statement-TAS, Inferred from 

Direct Assay-IDA, etc.)  

3.7.2 Gene clustering using Gene Ontology annotations 

 
The right similarity measure for a problem depends both on the 
application and on the algorithm employed.  Suppose we want to cluster 
the genes from the GD30 set.  How many groups of genes can we 
identify in our dataset?  To answer this question, we need to compute all 
pair-wise gene similarities (i.e. the gene similarity matrix) employing 
some GO similarity measure (such as FMS) and then use one of the 
clustering algorithm presented in Chapters 2 and 5.  To make the dataset 
easier to analyze, we prearranged the GD30 set (first 10 are anti-
apoptotic, next 10 pro-apoptotic and last 10 involved in apoptosis but not 
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specified whether anti or pro) such that the three cluster structure reveals 
itself just by displaying the gene similarity matrix.  This will allow us an 
initial analysis independent of any clustering technique.  We would also 
like to compare the GO similarities introduced above with the traditional 
gene similarities techniques based on the amino-acid sequence. Can we 
see three clusters in the gene sequence similarity matrix (Figure 3.5), 
produced by the Smith-Waterman [Smith and Waterman 1981] dynamic 
programming algorithm?  By inspecting the sequence similarity matrix 
from Figure 3.5 there does not seem to be any clusters in our data.  
Moreover, it seems that most of the genes from our example do not 
exhibit significant sequence similarity to any other gene in the data set. 
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Figure 3.5 Sequence similarity (Smith-Waterman) between the 30 apoptosis genes (dark-
high similarity, white-no similarity).  As we can see from this picture, based on sequence 
similarity, the genes in our GD30 data set does not seem to be similar.  
 

On the other side, by inspecting the GO term FMS similarity matrix 
(Figure 3.6) for the same set of genes we can clearly “see” two clusters: 
the first one (genes 1 to 10) that contains anti-apoptotic genes and the 
second one (genes 11 to 20) that contain pro-apoptotic genes.  FMS is 
able to capture functional similarity between the genes in GD30 that 
could not be inferred based on the sequence similarity alone.  We also 
note that neither the GO term normalized average similarity computed 
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using Equation 3.6 (Figure 3.7.a) nor the Jaccard similarity computed 
using Equation 3.7 (Figure 3.7.b) reveal an obvious cluster structure. 
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Figure 3.6 GO annotation FMS similarity (term similarity computed using Equation 3.3) 
between the 30 apoptosis genes (dark-high similarity, white-no similarity). 
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a. Normalized Average (Equation 3.6)  b. Jaccard (Equation 3.7) 
 
Figure 3.7 GO annotation average normalized similarity and Jaccard similarity (term 
similarity computed using Equation 3.3) between the 30 apoptosis genes (dark-high 
similarity, white-no similarity). 
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Figure 3.8 GO term Choquet similarity (Equation 3.15) for 30 apoptosis genes. 
 

The Choquet similarity for the same set of genes (Figure 3.8) tends to 
reveal the cluster structure, too.  However, it appears that this cluster 
structure is different than the FMS one, mainly in the third group of 
genes (index 20 to 30) where it exhibits a sub-cluster. 
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Figure 3.9 The image of the GD30 GO term FMS after applying VAT [Bezdek et al. 
2002], (compare to Figure 3.6).  The indices shown in this figure correspond to the ones 
from Figure 3.6 (that is, the gene on the second row with index 8 is the same as the one 
on row 8 in Figure 3.6). 
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So far, we acknowledge that our analysis of the similarity measures 
was somewhat speculative.  Next, we will use the similarity matrices 
computed above to cluster our dataset employing some of the techniques 
introduced in Chapter 2. 

Many clustering algorithms (such the C-means family) require, as an 
input, the desired number of clusters.  However, usually the number of 
clusters in a data set is not known.  To address this problem, we can run a 
clustering algorithm for a variety of cluster numbers and find the "best" 
one via a validity measure.  We refer the reader to [Theodoridis and 
Koutroumbas, 1998] for a full range of cluster validity measures.  In this 
chapter, we consider an algorithm called “Visual Assessment of 
(Clustering) Tendency” (VAT) [Bezdek et al., 2002], which is 
particularly useful for inspecting the clustering structure of small data 
sets (hundreds of genes).  The VAT is based on minimum spanning tree 
algorithm and outputs a permutation of the gene index that best reflects 
the cluster tendency of the data.  As an example (Figure 3.9), we show 
the image obtained after VAT was applied to the FMS matrix of the 
GD30 genes from Figure 3.6.  By comparing Figure 3.9 and Figure 3.6, 
we see that the genes 1-10 and the genes 11 to 20 from Figure 3.6 are 
still clustered together in Figure 3.9.  However, in Figure 3.9 we observe 
an extra cluster which was not obvious in Figure 3.6, made of the genes 
with indices {26, 28, 30, 23, 22} (circled),.  From Table 3.7 we find the 
genes to be: AHR, P53, PAX3, GAS2 and CD14.  The interesting fact 
about the above genes is that they are indirectly pro-apoptotic (they 
contribute to the cell death) although not stated in their annotation set.  
That is, if one of them is mutated then the cell divides uncontrolled, 
leading to cancer.  
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Figure 3.10 Cluster memberships computed using fuzzy C-means for the GD30 dataset 
using C=3 clusters: anti-apoptosis, pro-apoptosis and apoptosis, nos. 
 

Once we have an idea of the number of clusters in our dataset, we 
apply a clustering algorithm, such as fuzzy C-means (see Chapter 2, 
Section 2.6.1), to determine the gene memberships in clusters.  We 
mention that the traditional way of clustering objects described by a 
similarity matrix is to apply a relational clustering algorithm such as 
relational fuzzy C-means [Hathaway et al., 1994] (see Section 5.2.3).  
However, in this case, we constructed feature vectors by using the 
similarity between genes as features [Claverie, 1999]; that is Gi=(s(Gi, 
G1), ..., s(Gi, G30))t, i=1...30.  Then, we applied the non-relational fuzzy 
C-means (see Chapter 5.2.3) to cluster the GD30 genes.  The class 
memberships obtained on our GD30 apoptosis dataset are shown in 
Figure 3.10. 

Using the cluster membership shown in Figure 3.10, we assign each 
gene to the cluster where its membership is maximum (that is, gene 1 
will be labeled "anti-apoptotic", gene 11 - "apoptotic", etc.).  From 
Figure 3.10 we see that the majority of the genes will be assigned as 
expected (that is, gene 1 to 10 in class one- "pro-apoptotic", genes 11 to 
20 in class two - "anti-apoptotic", and genes 21 to 30 in class three-
"apoptotic, not specified").  An interesting case is gene index 24 
(CASP8) that has the maximum membership in the “pro-apoptotic” class 
and not in the "apoptosis, not specified" one as expected.  Upon further 
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investigation, this is to be expected as CASP8 is an apoptosis initiator 
gene - part of the cell apoptosis machinery.  Although not directly 
annotated as "pro-apoptotic" (as genes with indices 1 to 10), its apoptotic 
role is implicit due to the other GO annotations. 

If we only find the maximum membership and assign a given gene to 
a class, we do not take full advantage of fuzzy C-means.  Employing 
fuzzy C-means for clustering has two important aspects.  First, by 
inspecting the class memberships, we can assess the confidence of the 
class assignment.  From this point of view, we see from Figure 3.10 that 
gene index 2 (ANXA1, membership 0.8 in class 1) is more “anti-
apoptotic” than gene index 1 (RAF1, membership 0.5 in class 1).  
Obviously, this information is lost when the crisp assignment is 
performed.  Second, the memberships could be further used in computing 
various class properties.  An example of an application where we use 
fuzzy memberships is gene summarization [Popescu et al., 2004]. 

3.7.3 Gene summarization using Gene Ontology terms 

Gene summarization, or gene categorization [Joslyn et al., 2004], 
consists of finding the main GO functions for a group of genes.  In 
microarray experiments (see Chapter 5), for example, it is helpful to 
know the main functions of the over-expressed genes. 

The fact that many gene products contain multiple functional domains 
suggests that fuzzy clustering may be a good methodology for 
summarization.  When fuzzy clusters are found in similarity data 
representing sets of gene products, an individual gene product may have 
non-zero membership in more than one family, i.e., in multiple protein 
families.  Hence, its annotation terms can contribute to the summary of 
all the clusters where it has a non-zero membership. 

Let U(C, N) be the NC ×  fuzzy membership matrix that results from 
clustering N gene products into C clusters using the fuzzy C-means, as 
explained in the previous section (visualized in Figure 3.10 for GD30).  
Let P(N, NGO) be the NGON ×  term membership matrix defined as: 

 
⎩
⎨
⎧

=
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where NGO denotes the number of distinct terms in the GO appearing in 
all gene products in the dataset, IC(Tj) is the information content of term 
Tj, and cij(Tj, Gi) is the reliability of the annotation of gene Gi with Tj.  
Then, we can summarize the function of N gene products by: 
 PUTM *= , (3.17) 
where TM is a NGOC ×  matrix with the ith row representing the 
contributions of all GO terms to the ith cluster. The representative term 
for the ith cluster is then defined as that term corresponding to the 
maximum value (weight) in the ith row, i.e. the term with the greatest 
contribution (in terms of IC and reliability) to cluster i.  A final reliability 
value for a term in a cluster can be computed by normalizing the 
maximum value from row i using the sum of the row i. 

For our apoptosis example C=3, N=30 and NGO=139.  The 
summarization of the data set with three GO terms is shown in Table 3.8. 

Table 3.8 Summarization of the apoptosis genes GD30 with three GO terms 

Gene Index {1…10} {11…20}∪{24} {21…23}∪{25…30}  
Term ID GO:006916 

(anti-apoptosis) 
GO:006917 
(pro-apoptosis) 

GO:006915 
(apoptosis, nos.) 

Max weight 3.56 3.1 1.74 
Reliability 0.14 0.12 0.05 

 
As expected, the first cluster (genes 1 to 10) was summarized by the anti-
apoptosis term (GO:006916), the second cluster (genes 11 to 20, and 
gene 24) was summarized by the pro-apoptosis term (GO:006917) and 
the last cluster (genes 21 to 30, except gene 24) was summarized by the 
generic apoptosis term (GO:006915).  However, while their maximum 
weight (IC weighted by reliability, row 3 in Table 3.8) is somewhat high, 
their relative reliability (row 4 in Table 3.8) is low indicating that there 
might be some other candidates (not shown in Table 3.8).  

3.8 Ontology Similarity in Data Mining 

The ontological similarities described at the beginning of this chapter 
can be employed in a large variety of data mining algorithms instead of 
features and distances computed in some N-dimensional space.  We will 
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further refer to this class of algorithms as ontological algorithms.  The 
only requirement for an algorithm to use ontological similarities is to be 
relational; that is, to employ only relative similarities (distances) between 
objects and not feature vectors that describe the objects in a feature 
space.  This requirement is met, for example, by support vector machines 
(SVM) algorithms where the kernel is computed as the similarity 
between a set of objects.  In fact, Ben-Hur and Noble [2005] used a GO-
based kernel to find protein-protein interactions.  Aside from the SVM, 
other examples of data mining algorithms where ontological similarities 
have been employed are: NERFCM (see section 5.2.3), Smith-Waterman 
[Gamalielsson and Olsson, 2005], and fuzzy rule systems [Popescu et al., 
2007].   

As observed by Andreasen [Andreasen et al., 2003], the similarity 
between two ontology terms can be interpreted as a fuzzy membership of 
one term in the concept denoted by the other term.  This observation 
makes the case for considering every ontological algorithm as a fuzzy 
algorithm.  Moreover, we believe that the fact that we literally compute 
the similarity using set of words and not feature vectors, makes every 
ontological algorithm a step closer to Zadeh's "computing with words" 
paradigm [Zadeh, 2002]. 

The clustering of gene products based on their GO similarity has been 
previously reported in bioinformatics [Popescu et al., 2006; Pal et al., 
2005; Speer et al., 2004].  We can use either hierarchical or NERFCM 
clustering for this purpose.   

Gamalielsson and Olsson [2005] used a GO-based similarity between 
genes to align fragments from gene pathways with a modified version of 
the Smith-Waterman algorithm.  For example, the pathway fragment 
composed of four gene symbols FAR1-SIC1-[   ]-CLN2-SIC1 can be 
aligned (with a gap) to the fragment FAR1-CLN1-SWI6-CLN2-SIC1 
composed of five genes.  Their approach (GOSAP) can be used to 
conduct searches in pathway databases and to map groups of microarray 
genes to pathways. 

Popescu et al. [2007] employed gene similarity as fuzzy memberships 
to fire rules in an ontological fuzzy rule system (OFRS).  Fuzzy rule 
systems (FRS) were described in detail in Chapter 2.  Essentially, an 
OFRS is a Mamdani-Assilion FRS (MAFRS) where the membership 
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values are computed using the semantic similarity between terms, instead 
of using standard membership functions.  Popescu et al. used the OFRS 
to map genes to KEGG [Kanehisa and Goto, 2000] regulatory pathways.   
The fuzzy rule base consisted in rules of the form: 

 
IF gene1=G1 AND...AND genen=Gn THEN pathway=Pk,    (3.18) 
 

where {Gi}i=1,n are the genes mentioned in KEGG as present in pathway 
Pk.  In fact, the fuzzy rule base consists of the entire KEGG database for 
a given organism.  To map a group of query genes {Qj}j=1,m to a single 
pathway Pk that contains the genes {Gi}i=1,n (see Equation 3.18), one has 
to compute the GO-based similarity sk = sim({Gi}i=1,n, {Qj}j=1,m) using, for 
example, Equation 3.6 twice.  First, Equation 3.6 is used to calculate the 
pair-wise gene similarities based on their GO annotations, sij(Gi, Qj), as 
shown in Example 3.1.  Here, we note that in calculating pair-wise term 
similarities we found that a path-based approach (Equation 3.1) was 
better than the one based on information content (Equation 3.4) [Popescu 
et al., 2007].  Second, Equation 3.4 is applied to calculate sk by 
aggregation of the pair-wise gene similarities sij(Gi, Qj).. Then, the 
pathway Pk will be inferred as likely for the input genes with a 
confidence (activation) sk.  However, there are typically hundreds of 
pathways (say M) for an organism in KEGG, each with an associated 
rule.  Hence, we have to aggregate the output of all M rules to compute 
the OFRS output.  As in the case of a MAFRS, a variety of aggregation 
strategies are possible.  The simplest strategy is to choose the pathway 
Pm with maximum activation as: 
 }{maxarg

,1
k

Mk
sm

=
= . (3.19) 

However, since the KEGG pathways themselves form an ontology (as 
they are arranged in a hierarchy) we can further use the KEGG 
ontological similarity between pathways in the aggregation process.  A 
possible aggregation strategy is to designate as output the nearest 
common ancestor of all the pathways activated over a certain limit.  For 
example, if the P1 = “Glycolysis metabolism” pathway was activated 
with s1 = 0.9 and the P2=”Pyruvate metabolism” pathway was activated 
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with s2 = 0.6, then we can infer that the group of input genes belong to 
the “Carbohydrate metabolism” pathway, the NCA (P1, P2), with a 
likelihood s = min(s1,s2)=0.6.  

Similar to the GOSAP algorithm, the OFRS may be used for mapping 
groups of genes to pathways or to conduct search through pathway 
databases.  The GOSAP approach has the advantage of being more 
precise than the OFRS since it also accounts for the topology of the 
pathway.  However, the tradeoff is between accuracy and computing 
speed, since GOSAP has to perform (expensive) comparisons to all the 
candidate subpathways while OFRS performs only one similarity 
assessment per pathway.  

3.9. Discussion and Summary  

In this chapter we discussed various aspects related to the link between 
fuzzy logic and ontologies.  First, we showed that fuzzy logic can 
provide interesting new ways, such as the fuzzy measure similarity and 
the Choquet similarity, of comparing two objects annotated by an 
ontology.  By expanding the set of ontological similarity tools available, 
we can choose the right tool for the job.  For example, we mentioned that 
the widely used information content approach to computing term 
similarity was not found useful in applications where fuzzy inference 
was involved, such as ontological fuzzy rule systems. 

Second, we demonstrated how ontological similarity together with 
existent fuzzy algorithms such as fuzzy C-means and NERFCM, can be 
used to solve bioinformatics problems.  Several of the applications 
discussed here, such as gene clustering and gene summarization, are 
linked to microarray processing discussed in Chapter 5. 

Lastly, we argued that the ontological similarity between two 
concepts may be interpreted as a fuzzy match between the same 
concepts.  The acceptance of this interpretation opens a variety of 
possibilities in using fuzzy ontological matches in the computational 
intelligence algorithms.  We showed an example of this approach, 
ontological fuzzy rule systems, where the rules are fired using 
ontological similarity instead of membership functions. 
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Chapter 4 

Fuzzy Logic in Structural Bioinformatics 

4.1 Introduction 

This chapter focuses on the applications of fuzzy logic in 
characterization, comparison and prediction of protein structures. The 
basics of proteins and protein structures can be found in Appendix I.  
Each protein with a given amino acid sequence folds into a unique three-
dimensional structure under physiological conditions [Anfinsen, 1973]. 
The three-dimensional structure of the protein, in turn holds the key in 
understanding the function of the protein at the molecular level. 
Traditionally, the structure of the protein is determined using 
experimental methods like X-ray crystallography and Nuclear Magnetic 
Resonance (NMR). Although these methods usually result in a high-
resolution structures, they are both time consuming and expensive. It 
may take months or even years to determine the structure of one protein. 
Due to advancements in sequencing technologies, many complete 
genomes are being sequenced every year, producing millions of proteins 
whose structures need to be characterized. Obviously, the structures for 
most of these proteins will not be determined by experimental 
approaches.  

An alternative to determining the structures experimentally is to 
predict the structure of a protein computationally. The input to the 
prediction system is the amino acid sequence (also called the primary 
structure) of the protein and the output is the three-dimensional structure 
of the protein. In spite of many advancements in the techniques used, 
these methods generally provide low-resolution structures. Nevertheless, 
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low-resolution prediction results can provide useful insights for protein 
function and design. In addition, the prediction methods when combined 
with experimental methods may expedite the process of determining the 
structure dramatically while reducing cost. Since the three-dimensional 
structure of the protein is challenging to predict directly, researchers 
began to focus on the important intermediate steps such as secondary 
structure prediction and solvent accessibility prediction. Once the 
structure of a protein is predicted, one can characterize its function 
through structural features. Alternatively, the database of proteins with 
known structures and functions can be searched for a structural homolog 
(protein with high degree of structural similarity) to predict the function 
of the protein.  

The three-dimensional structure of a protein can be predicted either 
directly from the primary sequence or using the secondary structure of 
the protein. Secondary structure plays an important role in characterizing 
protein structures and providing a basis for tertiary structure prediction 
[Rost, 2001; Meiler and Baker, 2003]. The secondary structure of the 
protein provides the computational methods with constraints that reduce 
the search space greatly and makes the prediction more efficient and 
faster. By predicting the secondary structure of the protein before 
predicting the tertiary, one mimics the natural order of events in the 
folding pathway, i.e., the secondary structure formation is often followed 
by folding the protein into a three-dimensional compact structure. 
Therefore, the study of secondary structure prediction is a crucial part in 
protein three-dimensional structure prediction.  

Another important intermediate step that helps in characterization of 
protein tertiary structure is the prediction of solvent accessibility of the 
protein. The extent to which a solvent molecule can access the residue 
(an amino acid in the context of a protein) surface of a protein is called 
solvent accessibility.  It sheds light on the packing of the residues, 
helping sequence alignments and tertiary structure prediction [Rost and 
Sander, 1994b; Rost et al., 1997].   
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The function of a protein can be inferred to a large extent, if it is 
similar to another protein whose structure and function are known. This 
inference can be achieved by comparing the structures of the proteins 
and obtaining a quantitative similarity. Therefore, efficient methods for 
protein structure comparisons are essential in bioinformatics. Protein 
structure alignment (also called protein structure comparison) can be 
defined as matching the three-dimensional geometry of protein 
backbones through a rigid-body transformation (rotation and translation). 
Secondary structures are usually weighted more during the matching 
process. Protein structure alignment can help in discovering the 
structure-function relationship in proteins. The structure similarity could 
shed light on the function of a novel protein that does not have any 
sequence homologs in the Protein Data Bank (PDB, [Berman et al., 
2000]). Structure alignments also help in classifying proteins into 
families that may indicate the underlying evolutionary relationship 
among them. They can also help in evaluating the performance of protein 
tertiary structure prediction algorithms.  

The knowledge of the structural class of a protein based on structural 
comparison provides insights into its function and its relationship with 
other proteins. One possibility is to classify a protein based on secondary 
and tertiary structures. SCOP (Structural Classification of Proteins) 
[Murzin et al., 1995], CATH (Class, Architecture, Topology, 
Homologous super family) [Orengo et al., 1997] and FSSP/DDD (Fold 
classification based on Structure-Structure alignment of Proteins/Dali 
Domain Directory) [Holm et al., 1992; Holm and Sander, 1996] are some 
examples of databases in this direction. The lowest level in SCOP is 
based on the arrangement of secondary structure elements and is called 
‘protein class’ classification.  

In this chapter, we emphasize the role of fuzzy logic in these 
important areas of structural bioinformatics by explaining one approach 
for each of the above mentioned areas. In addition to the applications 
explained in this chapter, other applications of fuzzy logic in structural 
bioinformatics have been proposed. For example, a fuzzy inference 
engine (see Chapter 2) was used in protein surface segmentation [Heiden 
and Brickmann, 1994]. Fuzzy cluster analysis (see Chapter 2) based on 
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physicochemical properties of amino acids for secondary structure 
recognition was proposed by Mocz [1995]. 

4.2 Protein Secondary Structure Prediction 

Each protein folds in to a compact three-dimensional structure, which is 
determined by its sequence. Each amino acid in this structure will adopt 
one of the following eight secondary structure classes: H (α-helix), G 
(310-helix), I (π-helix), B (isolated β-bridge), E (β-strand), S (bend), T 
(turn), and C (coil). Generally, researchers focus on a simplified version 
of the problem that contains only three secondary structure classes, such 
that {H, G, I}→H (Helix), {E, B}→E (Extended Strand), and {C, T, 
S}→C (Coil), according to the CASP standard  
(http://predictioncenter.org), where CASP is a community wide 
experiment on critical assessment of techniques for protein structure 
prediction. Given an amino acid sequence, the aim of protein secondary 
structure prediction is to computationally assign each residue one of the 
three secondary structure classes. An example is illustrated in Figure 4.1. 
 

 
 
Figure 4.1 A protein fragment and its corresponding secondary structure. 
 

Owing to the importance of protein secondary structure prediction, 
much attention has been given to this problem over the past three 
decades [Chou and Fasman, 1974; Qian and Sejnowski, 1988; Holley 
and Karplus, 1989; Zhang et al., 1992; Yi and Lander 1993; Rost and 
Sander, 1993; Rost and Sander, 1994a; Salamov and Solovyev, 1995; 
Chandonia and Karplus, 1995; King and Sternberg, 1996; King et al., 
1997; Salamov and Solovyev, 1997; Rychlewski and Godzik, 1997;  
Karplus at al., 1998; Jones, 1999; Baldi et al., 1999; Ward et al., 2003; 
Jiang, 2003; Cheng et al., 2005; Bondugula et al., 2005]. Of all the 
successful prediction methods, the most popular systems are based on 
neural network techniques [Rost and Sander, 1994a; Jones, 1999], 
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nearest neighbor (NN) approaches [Salamov and Solovyev, 1995; 
Salamov and Solovyev, 1997; Bondugula et al., 2005], hidden Markov 
model (HMM) methods [Karplus et al., 1998], and support vector 
machines [Ward et al., 2003; Cheng et al., 2005].  Among them, nearest 
neighbor methods are simple and transparent, and they do not require 
retraining when new data is available. Nearest neighbor methods are 
successful when sequences similar to the query sequence can be found in 
the PDB, but have limited performance otherwise.  Although the nearest 
neighbor methods are sub-optimal techniques, the 1-NN rule is 
theoretically bounded above by no more than twice the optimal Bayes 
error rate [Cover and Hart 1967; Fukunaga and Hostetler 1975]. 

Many researchers have demonstrated [Rost and Sander, 1994a; 
Salamov and Solovyev, 1995; Jones, 1999] that secondary structure 
prediction accuracy could be increased by incorporating evolutionary 
information in the form of the Position Specific Scoring Matrix (PSSM) 
[Altschul et al., 1997]. PSSM is a profile of a protein that represents 
position-dependent amino acid distribution derived from the multiple 
sequence alignments. An amino acid at a particular position that is highly 
conserved receives a higher score than one that is less conserved at the 
same position. A protein of length l has a PSSM of dimension l×20. 

Neural network and HMM methods perform well if the query protein 
has many similar sequences in a sequence database to build a good 
PSSM but are less successful in other cases [Geourjon and Deleage, 
1994; Salamov and Solovyev, 1995]. In addition, these methods may 
under-utilize the structure information in PDB when the query protein 
has some sequence similarity to a template (known structure) in the PDB, 
compared with the nearest neighbor methods. We will now describe a 
secondary structure prediction system that combines a generalized k-
nearest neighbor (KNN) algorithm, the fuzzy k-nearest neighbor 
algorithm (FKNN) [Keller et al., 1985] and a neural network. 

Hybrid models provide us with methods to combine the strengths of 
the individual methods and overcome their weaknesses to some extent. 
MUPRED [Bondugula and Xu, 2007] is a hybrid secondary structure 
prediction system that integrates the information from the FKNN 
algorithm and the PSSM using a neural network. The framework 
combines the strengths of the two methods: it uses the sequence profile 
information more effectively than template-based methods, while it also 



Applications of Fuzzy Logic in Bioinformatics 
 
108 

has a better potential to utilize the information in the PDB than PSSM-
based methods. The system also provides a confidence measure for the 
predicted result, which enables users to identify regions of the protein for 
which the prediction is more likely to be accurate.  The MUPRED web 
server can be accessed at http://digbio.missouri.edu/mupred. 

MUPRED incorporates the PSSM of the query protein for secondary 
structure prediction through the PSI-BLAST [Altschul et al., 1997] 
program and the nr database (http://www.ncbi.nlm.nih.gov), which is a 
collection of non-redundant protein sequences.  The calculated PSSM is 
used in generating two sets of features that are fed to the neural network. 
To generate the first set of features, the authors converted the PSSMs 
into vectors that are suitable for training neural networks. First, these 
values were scaled into the normalized profile in the range of [0 1] using 
the maximum and minimum in the PSSMs of all proteins in the database. 
Each position in the query sequence is represented by a 20-dimensional 
vector representing the likelihood of each amino acid occurring at that 
position. An additional bit is used to mark the termini of the protein, 
resulting in a 21-dimensional vector per position. These scaled PSSM 
values are converted into vectors suitable for neural networks using the 
sliding window scheme, i.e., the vector that represents the profile values 
of the current residue is flanked by its neighbors on the both sides. The 
rationale for this process is that the secondary structure of an amino acid 
is not only based on the current amino acid, but also on its neighbors. 
The number of residues that will be added on each side is determined by 
the window size W. The authors experimentally found that W= 13 
worked the best. Therefore, the first feature set consists of 21x13 = 273 
features per residue. 

The second set of features is generated from the fuzzy k-nearest 
neighbor algorithm using the following procedure: the calculated PSSM 
is used to search for protein fragments in the local database that are 
similar to sub-sequences of the query protein using PSI-BLAST. Each 
fragment returned by the search is accompanied by several measures that 
include the percentage of identical amino acids between the sub-
sequence of a query and the corresponding hit fragment, the number of 
positive amino acid substitutions, i.e., ones with similar biochemical 
properties (refer to Appendix I for details), the number of gaps inserted 
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and the expectation value Eval. (see page 23). Eval measures the 
statistical significance that indicates the possibility that the current hit is 
obtained by chance in a particular database.  The returned results 
obtained from the search are scored based on Eval as: 
 ( ){ }EvalS 10log7,1max += . (4.1) 
 

 
 
Figure 4.2 Calculation of the membership value of each residue in secondary structure 
classes. The query protein is shown in the top row. (a) Database fragments from the PSI-
BLAST matches; (b) corresponding secondary structures of the database matches; (c) 
corresponding expectation value of the hits (Eval); (d) distance scores of the hits 
calculated from their respective Eval’s (Equation 4.1). 
 

The above expression was designed so that it roughly emulates the 
notion of a ‘distance’. Matching fragments whose similarities to the 
segments of query sequence are statistically significant have low 
expectation values and therefore low distances. Similarly, for matching 
fragments whose similarities are not significant, the distances are large. 
In the next step, these matches are labeled based on the classes to which 
the residues of the neighbors belong. Since the matches are obtained 
from the database that contains proteins whose experimental (PDB) 
structures are known, the labels are obtained from the database. If the 
residue of the neighbor that is aligned with the current residue is in a 
Helix state, the membership of the neighbor in the Helix class is ‘1’ and 
‘0’ in Strand and Coil classes.  These labeled neighbors are then used to 
calculate the membership value of the current residue in three classes. 
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These membership values represent the confidence with which the 
current residue belongs to the three secondary structure classes. Figure 
4.2(a) illustrates the database fragments for a typical query protein. The 
highlighted column depicts the neighbors using the multiple sequence 
alignments of the hits with the query protein. The secondary structures, 
Evals and the distance scores corresponding to the database fragments 
are displayed in Figure 4.2(b) 4.2(c) and 4.2(d), respectively.  

The secondary structure state of each residue can be predicted from 
class membership values of the neighbors with the FKNN algorithm. The 
following technique, adopted and modified from [Keller et al., 1985], 
provides the procedure to calculate the membership values of the current 
residue from the labeled neighbors.  Let { }lrrrP ,...,, 21= represent a 
protein with l residues. Each residue r has k-nearest neighbors, i.e., hit 
fragments that that have a residue aligned with the current residue (see 
Figure 4.2). Also, let iju be the membership in the ith class 

( { }CoilStrandHelixi ,,∈ ) of the jth neighbor. For each r, the predicted 
membership value iu in class i can be calculated using the following 
algorithm: 

 
BEGIN 
   Initialize i = 1. 
   DO UNTIL (r assigned membership in all classes) 
      Compute ( )rui  using:  
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      Increment i. 
   END DO UNTIL 
END 
 

where ),( jrrS is the matching score of residue r  with residue jr .  
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Figure 4.3 The block diagram of the MUPRED protein secondary structure prediction 
system. The profile of the query protein is used to generate two types of features. The 
first feature set consists of fuzzy class memberships of each residue in the three 
secondary structure classes. The second feature set consists of the normalized profile. The 
features are transformed into vectors suitable for neural network training using a sliding-
window scheme of window length W. For the profile-derived feature-set, W=13 is used. 
An extra bit is used to mark the termini of each protein. The PSSM feature-set, therefore, 
consists of 13x21=273 features. For the fuzzy memberships, W=11 is used and, similar to 
the PSSM feature set, an extra bit is used to mark the termini of the protein, resulting in 
11x4=44 features. 
 

It can be noticed from Equation 4.2 (equivalent to Equation 2.14) 
that the contribution of each neighbor (hit jr ) in the calculation of 
membership value of the current residue in each class is determined by 
the score ),( jrrS (Equation 4.1), which in turn is determined by the 
significance of the hit in the PSI-BLAST search. The influence of the 
score can be controlled by the fuzzifier ‘m’ [Keller et al., 1985]. If the 
value of fuzzifier is set to 1.5, the class membership value of the residue 
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is proportional to the inverse of the fourth power of score, and so on. In 
this case, the authors experimentally found that m = 1.5 yields the best 
results.  For each position, there are three numbers indicating how much 
each residue belongs to the each of the three secondary structure classes 
according to the FKNN algorithm. Similar to the first feature set, a 
sliding window with W=11 was used by the authors to generate the 
second feature set. They also included an additional bit to mark the end 
of the protein. This feature set therefore consists of vectors that 
contain11x4 = 44 features per residue. 

A neural network is used to integrate the information from the 
normalized profiles and the FKNN algorithm. The network is a fully 
connected feed forward network with one hidden layer. The features are 
fed into the input layer. The hidden layer consists of 300 units, a number 
that was experimentally determined by the authors. The output layer 
consists of three nodes, one each for the Helix, Strand and the Coil 
classes. The final architecture of the network is as follows: 
(273+44)×300×3 (input nodes × hidden nodes × output nodes). The 
values generated by the output nodes are the final class membership 
values of the current residue in each of the three secondary structure 
classes. The authors trained 100 networks and used the average value of 
the top four networks to determine the membership values. The 
procedure used in MUPRED is outlined in Figure 4.3. 

MUPRED was trained and tested using a non-redundant set of 
proteins from the March 2006 release of PDBSelect [Hobohm and 
Sander, 1994] database. The PDBSelect database consists of proteins 
such that the sequence identity between any two proteins in the database 
does not exceed 25%. Initially the database had 3080 polypeptide chains. 
This database was filtered to select high-quality structures. In particular, 
only structures that are generated using the X-ray crystallography 
method with a resolution of 3 Å or less were selected. Of these, proteins 
with incomplete backbone atoms were discarded. Proteins that are 
shorter than 40 residues were also removed. Furthermore, if less than 
90% of the protein residues are composed of regular amino acids, they 
are discarded too. Finally, the remaining 1998 proteins after the filtering 
constitute the local database of non-redundant structures.  Of these 1998 
proteins, the authors chose the oldest (according to the PDB release 
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dates) 1000 proteins for tuning the parameters in the FKNN algorithm 
and for training the neural networks. The latest 200 proteins in this 
database were used as the first benchmark dataset (B1) to test and 
compare the performance of MUPRED with other secondary structure 
prediction systems. The training proteins contained 335,531 residues 
with 35.14% Helix residues, 23.75% Strand residues and 39.43% Coil 
residues. The authors used the Astral SCOP protein domain database 
version 1.69 [Brenner et al., 2000] to derive a second protein set for 
benchmarking purposes (B2). Each protein sequence of the original 
database, which contained 5457 protein domains, was searched for 
homologs in the training sets of MUPRED and other prediction software. 
If a homolog was found with a statistical significance value (Eval) of less 
than or equal to 0.1, the query sequence was discarded from the 
benchmark set. Similar to the earlier dataset, protein domain sequences 
that are shorter than 40 residues were removed and sequences that are 
composed of less than 90% of regular amino acids are discarded too. 
After this filtration process, only 1934 domain sequences remained in the 
second benchmarking protein set. The authors preferred the above 
method to evaluate and compare the performance of MUPRED with 
existing software to standard cross-validation schemes for the following 
reason: the earlier methods did not have access to large numbers of 
proteins, both for building the PSSM and the training data sets.  The 
DSSP standard [Kabsch and Sander, 1983] of eight secondary structures 
were reduced to the CASP standard of three-state secondary structures as 
follows: {H, G, I}→Helix, {E, B}→Strand, and {C, T, S}→Coil. 

There are three popular methods to measure the accuracy of 
secondary structure prediction systems. They are Q-measures [Rost and 
Sander, 1994a], Matthew’s correlation co-efficient [Matthews, 1975] and 
Segment Overlap measure (SOV) [Zemla et al., 1999]. The authors used 
the first two measures to evaluate the performance of MUPRED and 
compared it with other existing software. The Q- measures are defined as 
follows:  

 
T
CQ ×=1003 , (4.3) 
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CQ ×=100 , (4.4) 

where C is the number of amino acids correctly classified in all three 
classes, T is the total number of amino acids, s is one of {Helix, Strand, 
Coil}. For example, CHelix is the number of amino acids in Helix 
configuration that are correctly classified, while THelix is the total number 
of amino acids in the Helix configuration. Matthew’s correlation 
coefficients are defined as follows: 
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FNFPTNTPM s
++++

×−×
= , (4.5) 

where s is one of {Helix, Strand, Coil}, TP is the number of positive 
cases that are correctly predicted, TN is the number of negatives that are 
correctly rejected, FP is the number of false positive cases, and FN is the 
number of false negative cases. For example, if a residue in a Helix is 
correctly predicted as Helix then it is a true positive case. If a non-Helix 
(either Strand or Coil) residue is correctly predicted as a non-Helix, then 
it is the case of true negative. If a Helix residue is predicted as a non-
Helix residue, then it the case of false negative. Finally, if a non-Helix 
residue is predicted as Helix residue, it is case of false positive. Though 
most of the current secondary structure prediction methods produce a 
classification in terms in terms of fuzzy values (numbers in [0 1], 
representing the confidence in each of the three secondary structure 
classes), the metrics formulated for crisp classifications are used for 
accuracy assessment. Recently, measures for assessments of fuzzy 
predictions were introduced in [Lee, 2006]. The generalized forms of Q-
measures are called F-scores, the generalized SOV is called fuzzy 
overlap measure (FOV) and the generalized M is called the fuzzy 
correlation coefficient. Detailed discussion on the formulae and 
applications of these generalized metrics can be found in [Lee 2006]. 

The authors compared the performance of MUPRED with 
PSIPREDv1[Jones 1999] and SSPro4[Baldi et al., 1999]. Both of them 
use PSSMs and neural networks and were also trained on the sets that 
contained similar number of sequences as in training set for MUPRED. 
The performance of the MUPRED version that just contained the FKNN 
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algorithm (PSSM was used only to search the database) followed by a 
neural network filter was also reported. We present these results in Table 
4.1. Except for the QHelix measure, MUPRED performed the best for all 
the other measures in both B1 and B2 datasets. 

Table 4.1 The performance comparison of various algorithms on the two benchmark sets 

Algorithm Test set Q3 QHelix QStrand QCoil MHelix MStrand MCoil 
FKNN+NN B1 73.9% 76.2% 67.2% 76.1% 0.66 0.61 0.54 
MUPRED B1 79.2% 80.9% 72.4% 82.0% 0.74 0.69 0.62 
PSIPREDv1 B1 75.9% 78.4% 68.3% 78.6% 0.70 0.63 0.56 
SSPro4 B1 77.4% 82.7% 66.7% 79.5% 0.73 0.65 0.59 
FKNN+NN B2 76.1% 80.0% 68.2% 76.8% 0.69 0.63 0.57 
MUPRED B2 80.1% 83.9% 72.6% 80.8% 0.75 0.69 0.63 
PSIPREDv1 B2 77.1% 80.2% 68.3% 79.0% 0.72 0.63 0.58 
SSPro4 B2 78.4% 84.4% 67.3% 79.0% 0.74 0.65 0.60 

 
Here, Q3 is the fraction of amino acids whose secondary structures have been accurately 
predicted in all three classes. QHelix, QStrand and QCoil are the fraction of amino acids that 
are accurately predicted in Helix, Strand and Coil classes respectively. The numbers in 
bold indicate the best performance in the category. Similarly, MHelix, MStrand and MCoil 
stand for Matthew’s correlation coefficient for Helix, Strand and Coil classes 
respectively. B1- the 200 protein benchmark set derived from the March 2006 release of 
PDBSelect database. B2- the 1934 protein domain benchmark set derived from Astral 
SCOP database version 1.69. 
 

The advantage of FKNN over the traditional (crisp) KNN algorithms 
is that residues are assigned a membership value in each class rather than 
binary decision of ‘belongs to’ or ‘does not belong to’. Such an 
assignment allows the use of these membership values as (quantitative) 
strength or confidence with which the current residue belongs to a 
particular class. These strengths when fed to neural network along with 
the PSSM resulted in better performance when compared with existing 
methods. In the traditional (crisp) KNN, all the neighbors are weighted 
equally, which is not necessarily true in the context of proteins i.e., some 
protein fragments are more similar to the sub-sequences of the query 
protein than other fragments. This similarity is captured in the 
formulation of expectation value (Eval), which in turn is transformed 
into the score ),( jrrS  in MUPRED. The FKNN was formulated such 
that these relative distances (score ),( jrrS  in this case) are weighted 
when the query vector (current amino acid) is classified into one of the 
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three secondary structure classes.  The superiority of the FKNN over the 
traditional KNN algorithm for protein secondary structure prediction was 
also demonstrated in earlier work that lead to the development of 
MUPRED [Bondugula et al., 2005]. 

MUPRED is a simple and a novel framework that bridges the gap 
between the template based methods that find alignments between the 
whole query sequence or its short fragments and sequences in the protein 
structure database PDB and sequence profile based methods in which the 
sequence profile is derived from the similar sequences (typically without 
structural information). Template based methods are successful when 
sequences similar to the query sequence can be found in PDB, but have 
limited performance otherwise, mainly due to lack of using sequence 
profile information of the query protein. In contrast, sequence profile 
based methods take advantage of the sequence profile information but 
use the structure information in PDB indirectly. MUPRED overcomes 
this limitation by looking for fragments in the database that are similar to 
the segments of the query sequence rather than sequence-level homologs. 
Integrating these two fundamentally different models into a single model 
enables MUPRED to provide balanced predictions for queries with or 
without homologs in the sequence database. The notable feature of 
MUPRED prediction system is that the accuracy of the prediction 
increases as more and more protein structures become available without 
retraining or retuning. MUPRED also assigns confidences to the 
predictions, which enable the users to identify the regions of a protein for 
which the prediction is more likely to be accurate. The readers are 
referred to [Bondugula and Xu, 2007] for a complete description of the 
method to generate the confidence values and other details. 
 
4.3 Protein Solvent Accessibility Prediction 
 
The solvent accessibility of a protein may be defined as the extent to 
which the molecule of the solvent can access the residue in a protein. 
Generally, the residues of a protein are classified as either ‘buried’ 
(solvent molecules cannot easily access the residue; represented as B) or 
‘exposed’ (solvent molecules can easily access the residue; represented 
as E). Sometimes, an additional class called ‘intermediate’ (I) is also 
used.  The accessibility is often defined as the percentage of surface area 
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for an amino acid that is exposed to the solvent. However, there are no 
universally accepted criteria to divide the residues into these classes. 
Predicting the solvent accessibility along with the secondary structure of 
a protein is an important intermediate step in the process of protein 
tertiary structure prediction. Solvent accessibility was demonstrated to 
assist in alignments in regions of low sequence identity for threading 
[Rost and Sander, 1994b; Rost et al., 1997]. Despite recent 
improvements, the prediction of solvent accessibility is less accurate 
when compared to the secondary structure prediction accuracy because 
the solvent accessibility is less conserved than the secondary structure.  

In [Sim et al., 2005], a novel method for predicting solvent 
accessibility was proposed. The method uses profiles and a FKNN 
algorithm to predict solvent accessibility. The system was designed to 
make predictions in both two and three classes. For the two class 
classification into B/E, the following thresholds of solvent accessibility 
were used: 5% [i.e., (0, 5%) and (5%, 100%)], 16% and 25%. For three-
class classification, the threshold of (0, 9%) for B, (9%, 36%) for I, and 
(36%, 100%) for E were used. The profiles of the proteins were 
generated using the PSI-BLAST program with the default parameters 
and the default scoring matrix. The low-complexity regions of the 
proteins, regions of a special structural conformation called coiled-coils, 
and transmembrane regions of the proteins were filtered out before 
running the prediction system.  

For each residue, a sliding window of size 15 on the profile, centered 
on the current residue is used as the input feature vector to the FKNN 
algorithm.  Sim et al. [2005] define a distance measure and weight to use 
in the FKNN algorithm. The distance between two feature vectors A and 
B is defined as: 

 ∑ −=
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A
ijiAB PPWD
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)()( , (4.6) 

where ( )20,...,2,1;15,...,2,1)( == jiP A
ij  is a component of the feature 

vector (note that ljP  represents the profile of the protein of l amino acids, 
while each j represents one amino acid), and  iW is weight parameter is 
defined as: 

 ( )288 iWi −−= . (4.7) 
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The weight is designed such that the current residue gets the maximum 
weight and importance of the neighbor i decreases with increasing 
distance from the current residue. 

Sim et al. used a set of proteins derived from the Astral SCOP 
(version 1.63) chain-select-90 database as the reference. BLASTCLUST 
(www.ncbi.nlm.nih.gov/BLAST) was used to generate a training set. The 
authors eliminated any protein that was shorter than 50 amino acids in 
length. The resulting database contained 3460 non-redundant proteins 
with 819,090 feature vectors. Two additional datasets were used for 
benchmarking the performance. The RS126 [Rost and Sander, 1994a] 
database consists of 126 proteins. This served as the first benchmark 
dataset while another database that consisted of 229 newly added 
proteins to the Astral SCOP database was also included.  Each database 
contains a non-redundant set of proteins such that the maximum 
sequence identity of any two proteins from any of the above three 
databases was at most 25%.  

Sim et al. experimented with the various values for fuzzifier m and 
the number of neighbors to consider (k) in the FKNN algorithm (see 
Equation 4.2) and found the following optimal values:  (m, k) = (1.33, 
65) for 3-state prediction (with 9% and 36% thresholds). For the two-
state prediction (0%, 5%, 15% and 25% thresholds), the optimal values 
are (m, k) = (1.5, 40), (1.25, 75), (1.29, 65) and (1.33, 65), respectively. 
Two measures were used to assess the performance of the prediction 
system. The first measure indicates the percentage of correctly predicted 
solvent accessibilities, and the Matthew’s correlation coefficient 
(Equation 4.5) was used as the second measure.  The authors 
demonstrated that this method has a superior performance when 
compared to other methods that used neural networks, support vector 
machines and Bayesian statistics. For more details and performance 
issues, the reader is referred to [Sim et al., 2005]. 
 
4.4 Protein Structure Matching Using Fuzzy Alignments 
 
Given two or more protein structures, the aim of an alignment algorithm 
is to return the new orientation of the aligned protein(s) with respect to a 
fixed reference protein by applying rigid body transformations on the 
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protein being aligned. If ix  is the three-dimensional coordinates of the ith 
residue in the first chain and iy is the three-dimensional coordinates of 
the jth residue in the second chain, the objective of the alignment methods 
is to minimize the sum of the distance d(i,j) between the residue pairs on 
the two different chains. Usually, the alignment is performed using the 
Cα-atoms along the backbone using the following squared distance 
metric: 

 
2

, ji yx −=jid . (4.8) 

As an example, the alignment between the inosine monophosphate 
dehydrogenase and glycolate oxidase is illustrated in Figure 4.4. 

Most of the existing protein alignment methods use one of the two 
approaches: 1) directly minimize the inter-atomic distance between the 
aligned structure backbones (global alignment) or 2) minimize the 
distance between the structural segments of the proteins that need to be 
aligned (local alignment). We will now describe a method that uses the 
former approach, aided by a fuzzy weight matrix. 

 
Figure 4.4 Structure alignment between glycolate oxidase (1gox, in green and red) and 
inosine monophosphate dehydrogenase (1ak5, in blue). 
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To align the protein structures, Blankenbecler et al. [2003] used a 
method based on the Needleman-Wunsch global sequence alignment 
algorithm [Needleman and Wunsch, 1970]. They modified the original 
algorithm to generate a fuzzy alignment matrix instead of a binary 
matrix. The advantage of using a fuzzy alignment matrix is that results 
allow for a probabilistic interpretation without using complex simulation 
techniques. The approach is also less sensitive to the choice of the 
distance measure as the distances are weighed by the fuzzy alignment 
matrix. Finally, user specified constraints may be easily incorporated in 
to the fuzzy alignment matrix. 

The approach by Blankenbecler et al. [2003] is mainly an iterative 
two-step procedure. In the first step, a fuzzy assignment matrix W is 
calculated. Each element [ ]1,0∈ijW indicates the confidence that that the 
atom i in the first chain is matched with the atom j in the second chain. In 
the second step, one of the chains is translated and rotated with rigid 
body transformations using the W calculated in the first step. At the start 
of the algorithm, the degree of fuzziness is high and as the algorithm 
proceeds through the number of iterations, the degree of fuzziness is 
reduced through annealing, therefore transforming the fuzzy assignment 
matrix W into a binary matrix. The final matrix shows the matched 
atoms. The objective is to minimize the value of the chain error function 

chainE  i.e., to minimize the distance between the matched elements of the 
two protein chains. If ix is the coordinate of the ith residue in the first 
chain, the chain error function at a fixed jy  (the jth residue in the second 
chain) is formulated as follows: 

 ( )∑∑
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where a is the translation vector and R is the rotation matrix. 
Let ( )MxxxX ,...,, 21=  and ( )NyyyY ,...,, 21= represent two protein 

chains containing M and N amino acids, respectively. All possible 
alignments of the two chains can be represented by a directed path on an 

NM × alignment dot matrix. Each dot (i,j), excluding the dots at the 
boundaries, have k=3 possible predecessors along the alignment path. If 
k=1, a gap in chain X was aligned with an atom in chain Y. If k=2, an 
atom in chain X was aligned with an atom in chain Y, and if k=3, a gap in 



Chapter 4: Fuzzy Logic in Structural Bioinformatics 
 

121 

chain Y was aligned with an atom in chain X. The alignment cost ijD is 
given by: 

 { },~min ;, kjikij DD =  (4.10) 

where kjiD ;,
~

 is the alignment cost if the alignment of the path passes 
through the node given by k and can be calculated using the following 
recursive relations:  
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where ( )lα  is the gap penalty for a gap of length l  and jid , , as defined 
in Equation 4.8. Notice that NMD ,  holds the information only to 
compute the cost of the alignment of the two chains, the optimal path(s) 
are stored in another matrix kjiv ;, . Each element (i,j;k) indicates the 
probability that the optimal path passes through (i,j) and through the 
preceding node based on k. The matrix v can be calculated using the 
following expression: 
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where T>0 is a parameter to control the fuzziness of the alignment 
matrix. For a large T, all paths are equally probable, indicating maximum 
fuzziness, while the limit T→0 results in one optimal path (the original 
Needleman-Wunsch algorithm). As the algorithm proceeds in several 
iterations, the parameter T is annealed and gradually the fuzzy matrix v 
will becomes a binary matrix indicating only one alignment. 

Blankenbecler et al. [2003] limited their method to the position-
dependent linear gap penalties of the form: 

 ( ) ( ) ,1 ext
n

a l λλ −+  (4.13) 

where, ( )n
aλ is the gap opening penalty in protein chain n and extλ is the 

gap extension penalty for a gap of length l. The equation for calculating 
the alignment cost can be redefined in terms of v, ( )n

aλ  and extλ  as: 
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Figure 4.5 The flowchart of the protein structure matching using fuzzy alignments. 
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resulting in an alignment cost at node (i,j), 

 ∑=
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The probability that a node (i,j) is a part of the optimal path can be 
calculated using a recursive definition. With an initial value of 1, =NMP , 
we get: 
 ,,13;,11,12;1,11,1;1,, jijijijijijiji PvPvPvP ++++++++ ++=  (4.16) 

with the necessary condition 10,0 =P . Using the definition of jiP , and 
2;, jiv , the fuzzy assignment matrix can be defined as: 

 2;,,, jijiji vPW = . (4.17) 

The above expression can be interpreted as the product of the confidence 
that (i,j) is part of the optimal path and the confidence that this pair is 
locally matched. The flowchart depicting the above process is illustrated 
in Figure 4.5. 

The performance of this method was assessed using a set that 
covered a wide range of protein families and includes matching proteins 
with insignificant sequence similarity. Most of the protein pairs belonged 
to the same SCOP (http://scop.mrc-lmb.cam.ac.uk/scop) superfamily. 
Blankenbecler et al. chose pairs that had diverse structures and reported 
difficulty of alignment. Most of the protein pairs used to assess the 
performance were in the benchmarks of previous protein alignment 
studies. The authors compared the results of their method with following 
three popular protein alignment servers: Yale Alignment Server 
([Gerstein and Levitt, 1996], http://molmovdb.mbb.yale.edu/align), Dali 
([Holm and Sander, 1996], http://www.ebi.ac.uk/dali, and CE 
([Shindyalov and Bourne, 1998], http://cl.sdsc.edu). The method 
employs two sets of parameters. The first set is used to fine tune the 
algorithm itself and the second set is used to explore the optimal gap 
penalties for alignments. The parameters for fine tuning the algorithm 
were derived from the ten training sequences that were randomly chosen 
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from the benchmark set described above.  The gap penalties were 
optimized to obtain the alignments in which the number of aligned atoms 
was comparable to that of the other methods. Once these parameters 
were set, they were left unchanged throughout the study. The 
performance of the method was measured in two terms: RMSD (root of 
the mean squared distance) between the aligned proteins and N, the 
number of atoms aligned in the proteins.  In most cases, this approach 
produced superior performance when compared to the other techniques. 
It allowed for a fast alignment of proteins with the execution time scaling 
with the square of the length of proteins chains aligned. The reader is 
referred to [Blankenbecler et al 2003] for algorithmic and performance 
details. 

4.5 Protein Similarity Calculation Using Fuzzy Contact Maps 

Another approach for comparing protein tertiary structures is through 
mapping patterns of interactions among the residues. Two residues are 
said to be in contact if they are separated by a distance less than a 
predefined threshold. A matrix that records these contacts for all possible 
pairs of residues in a given protein sequence is called a contact map. A 
contact map provides invaluable information about the non-local contacts 
that help proteins form and maintain stable structures.  While a contact 
map does not contain all information about the protein, it can be viewed 
as a good two-dimensional representation of protein three-dimensional 
structure. Contact maps are useful in protein three-dimensional 
prediction and for protein structure comparison [Carr et al., 2002; 
Caprara et al., 2004]. We will now briefly describe a work by Pelta et al., 
[2005] that introduces fuzzy contact maps and their application to protein 
similarity calculation.  

A contact map for a protein of length l is a binary matrix of 
dimension l×l such that each element (i,j) is equal to 1 if the Euclidean 
distance between residues i and j is less than a pre-defined threshold T, 
or equal to 0, otherwise. The similarity between two proteins can be 
calculated by aligning their contact maps. Given contact maps of two 
proteins, the problem of finding their largest common sub-structure is 
called the ‘Max-CMO’ (Maximum Contact Map Overlap) problem.   
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These contact maps with a fixed threshold have some limitations. 
They cannot handle the uncertainties inherent in the determination of the 
atomic Cartesian coordinates by X-Ray crystallography or NMR. Some 
experimental errors can range from 0.01 to 1.27 Å which is close to some 
covalent bonds [Laskowski, 2003]. A contact map calculated at a fixed 
threshold loses information of contacts at other thresholds, i.e., it cannot 
characterize the distance of a contact between two residues well. To 
alleviate the above mentioned problems, Pelta et al., [2005] introduced 
the concept of fuzzy contact maps. In fuzzy contact maps, both the 
threshold and the meaning of the term ‘contact’ are generalized. First, the 
traditional contact maps are generalized by removing the constraint of 
having a single-threshold. This is useful in distinguishing various 
features of the protein. For example, the α-helices and β-strands have 
quite different contact patterns and can be conveniently represented 
using different thresholds. The second generalization is for the term 
‘contact’ itself. In a traditional sense, a contact means anything that is 
less than threshold T. Fuzzy contact maps facilitate alternate definitions 
of contact like ‘slightly more or slightly less than T’ and ‘T and slightly 
more than T’. The flexibility of the fuzzy contact maps helps the user to 
decide how much biology to include in these mathematical constructs.  

A generalized maximum fuzzy contact map overlap problem or 
GMax-FCMO takes multiple thresholds and multiple definitions of the 
contact into account, while calculating the overlap of contact maps for 
aligning two protein structures. In GMax-FCMO, the objective is to 
maximize the number of alignments of pairs of residues that are in 
contact with respect to the same threshold and same semantic meaning of 
contact. The authors proposed the use of FANS, a fuzzy sets-based 
extension to the classical variable neighborhood search (VNS) [Hansen 
and Mladenovic, 2001] to solve the GMax-FCMO. In VNS, the 
neighborhood around the current solution, used to sample the solution 
space, is systematically and dynamically adjusted to allow the local 
search to proceed beyond a local optimum. In FANS, a fuzzy objective 
function is used to evaluate and accept moves in solution space. Pelta 
and his colleagues first calculate an initial alignment of the fuzzy contact 
maps and improve the solution by randomly applying one of the three 
neighbor operators (N1, N2 and N3), defined as follows: 
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• N1: inserts one random alignment into current overlap 
• N2: inserts two random alignments into current overlap  
• N3: changes the alignments in the current overlap to either 

left or right.  
 

One neighborhood operator is randomly selected (with same 
probability for all operators) and applied to the current alignment. This 
process is repeated k times (initially, k=3). If all the neighboring 
solutions (new overlaps generated by applying neighborhood operators to 
current overlap) are worse then the current solution (based on the user 
defined fuzzy objective function), the value of k is reduced by 1. 
Essentially, this procedure first explores for good solutions in the 
neighborhood and if better solutions are not found, the current best 
solution is exploited further. The objective function used by the authors 
also allowed them to accept solutions that are sometimes worse then the 
current solution. The authors demonstrated that the solution using GMax-
FCMO produced results that are comparable and sometimes superior, 
when judged against existing methods. Further details of the algorithms 
and discussion of FANS can be found in [Pelta et al., 2005]. 
 
4.6 Protein Structure Class Classification 

 
One of classification criteria for a globular protein (a protein that is 
soluble in water) is based on its secondary structure composition. The 
four main categories are all-α, all-β, α+β and α/β.  A protein is classified 
[Chou, 1989] as an all-α protein if it contains >45% α-helices and <5% 
β-strands, an all-β protein if contains <5% α-helices and >45% β-strands, 
an α+β protein if it contains >30% α-helices and >20% β-strands with 
dominantly anti-parallel β-strands (see Appendix AI.2), and an α/β 
protein if it contains >30% α-helices and >20% β-strands with 
dominantly parallel β-strands. The information about the structural class 
of proteins has a proven impact on protein secondary and tertiary 
structure predictions [Chou, 1989; Deleage and Roux, 1989; Cohen and 
Kuntz, 1987; Carlacci et al., 1991].  The class of a protein can be 
determined using its amino acid composition, hydrophobicity pattern of 
the residues or α-helix/β-strand content. We will now describe a method 
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described in [Zhang et al., 1995] that uses amino acid composition and 
fuzzy c-means (FCM) clustering [Bezdek, 1981] (see Section 2.6) for 
protein class prediction.  

Let S be a set that represents all globular proteins. Here, S contains 
four subsets αS , βS , βα+S and βα /S , representing each of the four 
structure classes. If traditional (crisp) sets are used to represent these 
classes, then each protein belongs to only one subset. However, some 
proteins may possess characteristics of more than one subset, making 
traditional crisp sets inadequate to represent such natural phenomenon.  
Using fuzzy sets to represent structural classes is one possible solution to 
overcome the limitation imposed by crisp sets. A protein can belong to 
more than one structural class by having non-zero membership value in 
more than one class. Given such a flexible representation, two questions 
remain: 1) how can the memberships of a given protein in various 
structural classes represented by the fuzzy sets be determined and 2) 
given the membership value of a particular protein in various fuzzy sets, 
how can a specific structural class be assigned?  The first question can be 
addressed by using the FCM to calculate the membership values of each 
protein in the four structural classes. There are many approaches to 
address the second question, and the simplest of all is to assign a protein 
to class in which it has the maximum membership value.  

Each protein is represented by a twenty-dimensional vector f, such 
that each component of the vector represents the contribution of a 
specific amino acid to the composition of the protein. The vector f is 
defined as: 
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where jn is the frequency of occurrence of the jth amino acid in the 
protein. Similarly, a set of i proteins ix  can be represented by: 
 ( ) ( ) ( ) ( )[ ]iiii xfxfxfxF 2021 ,...,,= , (4.19) 

while the class prototype can be represented by: 
 ( ) ( ) ( ) ( )[ ]kfkfkfkF 2021 ,...,,= , (4.20) 
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where k = α, β, α+β and α/β. One of the easiest ways to determine the 
initial values of prototypes before running the FCM is to set each of them 
to the average value of the members within the structural class of the 
training data. Zhang et al. [1995] chose this approach here. The degree of 
membership of each protein in the four structural classes can be 
represented as αu , βu , βα +u and βα /u . While running the FCM, the 
following objective function was minimized over a set of n proteins with 
respect to the fuzzy membership values ( )ik xu  and the ‘fuzziness’ index 
q (similar to Equation 2.7): 
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where kV represents the cluster centroids that were defined as: 
 ( ) ( ) ( ) ( )[ ]kvkvkvkV 2021 ,...,,= , (4.22) 

with k = α, β, α+β and α/β. In addition, the solution must satisfy the 
following constraints: 
 ( ) 10 ≤≤ ik xu , (4.23) 

and 
 ( ) ( ) ( ) ( )iiii xuxuxuxu βαβαβα /+++ +  = 1. (4.24) 

The Minkowski distance is used to calculate the distance between a 
given protein ( )ixF  and the cluster centroid kV . The metric was defined 
as: 
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where p determines the particular Minkowski metric used: p=1 
represents the ‘city block’ distance while p=2 represents the ‘Euclidean’ 
distance. Following the algorithm from [Bezdek, 1981], Zhang et al. used 
the FCM algorithm (see Section 2.6) and calculated mJ  based on 
Equation 2.7 for clustering the proteins into the four structural classes. 

Different choices for the initial cluster centers often lead to different 
clusters when using the FCM. This problem was eliminated by Zhang et 
al. by setting the initial representatives of the clusters to the average 
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value of the members within the structural class of the training data that 
consists of 64 proteins used in [Chou, 1989]. Once the membership 
values of all the proteins in each of the four structural classes are 
calculated, the proteins are assigned to the class in which they have the 
maximum membership value. The accuracy of the algorithm was 
measured in terms of the percentage of correct predictions (PCP) of all 
the predictions. The parameters p (for use in Minkowski metric) and q 
(fuzziness index) were optimized to perform well on the 64 training 
proteins using the following random sampling method: the FCM was run 
several times using a combination of a random value for m in [1.0 3.0] 
and random value for m in [1.0 2.0] and the PCP was calculated. The 
combination that performed well on that training set was: (p, 
m)=(2.4,1.4). 

Zhang et al. also introduced a representation of the proteins in the 
membership-function space. The membership function space with four 
classes can be represented by a regular tetrahedron of height h, such that 
each of the four classes will be represented by a vertex. If the proteins 
are assigned crisp membership values, they can be visualized to be 
present at the vertices only. If the flexible fuzzy representation is used, 
the proteins can be present anywhere in the tetrahedron. The centroid of 
the tetrahedron corresponds to the state of maximum fuzziness. 
Representation of proteins in membership space serves an excellent aid 
in visualizing the clusters of the given proteins. The Cartesian 
coordinates of a particular protein in the tetrahedron of height h can be 
calculated from its membership values in the four structural classes using 
the following equations: 
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 (4.28) 

In addition to achieving accuracy that was comparable with other 
methods on the training proteins, the authors reported that the method 
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also performed well on blind test sets. The reader is referred to [Zhang at 
al., 1995] for further details. 

4.7 Summary 

This chapter discussed the applications of fuzzy concepts and 
methods in characterization and prediction of various protein structure 
features, including predicting secondary structure, solvent accessibility, 
contact map, and protein class, as well as comparing a pair of protein 
structures. Protein structures do not have simple geometry and typically 
contain some flexibility, which are suitable for fuzzy approaches to 
describe. The examples illustrated in this Chapter have demonstrated that 
fuzzy approaches are especially powerful for bioinformatics related to 
protein structures. 
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Chapter 5 

Application of Fuzzy Logic in Microarray Data 
Analyses 

5.1 Introduction 

A living organism often has trillions of cells, each carrying the same 
genome. However, only a fraction of the genes coded by the genome are 
active in any given cell. These genes are "expressed" for the function of a 
cell. "Gene expression" is typically referred to as the transcription (see 
Appendix 1) of mRNA. Gene expression level changes over time and in 
response to environmental stimuli. For example, a bacterium often 
expresses more genes that help digest nutrients when it is in a nutrient-
rich environment. Gene expression patterns may also change 
dramatically at different stages in the life cycle of an organism. A 
butterfly comes from a caterpillar, which has the same genome. 
However, they look very different and this is mostly due to different 
gene expression patterns. By knowing the expression levels of mRNA 
under different conditions and over time, one can infer extensive 
information about gene functions, gene regulations, and gene 
interactions. 

DNA microarrays (a.k.a. biochips, DNA chips, gene arrays, genome 
chips) are currently the most popular technology to measure gene 
expression level. Microarray technology is based on the principle of 
DNA hybridization, that is, two single stranded DNA fragments tend to 
bind together (renaturation) at regions with sequence complementarity 
(i.e., A-T and G-C for DNA; A-U and G-C for RNA). A microarray 
often has tens of thousands of spots, each containing complementary 
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DNA molecules of the whole or part of a gene sequence as a probe. The 
probes are deposited on a solid surface such as glass or plastic.  
Microarrays utilize the preferential binding of complementary nucleic 
acid sequences between a probe and the gene that the probe represents. 
When the targets (DNA fragments from the unknown sample, 
fluorescently labeled) are deposited onto the array, they will “stick” 
(hybridize) only to the complementary probes.  As a result of the 
hybridization process, the intensity of the fluorescent emission at a given 
probe location is directly proportional to the amount of DNA fragments 
with the same identity existent in the sample. In this fashion, a 
microarray can simultaneously monitor expression levels for most of the 
genes in a genome in a single experiment (see Figure 5.1).  
 

 
 

Figure 5.1 A segment of microarray image (figure from http://doegenomestolife.org by 
the U.S. Department of Energy Genomics:GTL Program). Each spot represents a gene 
and the intensity represents its expression level. 

 
There is a great variety of microarrays depending on their chip 

technologies, their probe types and their experimental designs.  For 
instance, DNA probes are used in genomic applications while protein 
probes are used in proteomics applications, typically for inferring 
protein-protein interactions.  In this section we describe two main 
variants of the microarray technology: cDNA microarrays and 
oligonucleotide (oligo) microarrays. In a cDNA microarray, the probes 
(cDNA fragments 500 to 5000 bases long) are extracted from a cDNA 
library and deposited on the chip support (glass) using a robotic device.  
There are usually two types of targets (mixed in a “soup”) hybridized 
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(washed over) at any given location in a cDNA array, one coming from 
“abnormal” cells and the other extracted from “normal” cells.  To 
differentiate between them, the two target types are labeled with different 
fluorescent dyes; for instance, red for “abnormal” and green for 
“normal”.  As a consequence, if only green light is observed at one 
location, the DNA fragment (i.e. the gene) represented by the probe from 
that location is absent from the “abnormal” cell.  This could be the case 
of a tumor suppressor gene that is missing in a cancerous cell.  Similarly, 
if only red light is observed at a location, the given gene is missing in the 
“normal” cell.  This could be the case of an oncogene (tumor causing 
gene) present in the cancer cell.  The advantage of cDNA microarrays is 
that they can be customized to a given experiment.  The disadvantage is 
that their quality highly dependent on the conditions existent in each lab.   

In the oligonucleotide (oligo) microarrays, the probes are DNA 
fragments 20-80 bases long synthesized vertically on the chip using a 
technology (photolithography) inspired from the electronic component 
industry.  The advantage of this type of array is that it tends to have a 
higher quality than a cDNA microarray.  However, unlike the cDNA 
arrays they are not easily customizable.  Other than these two types of 
microarrays discussed above, there are ChIP-chip arrays, tiling arrays, 
Affymetrix arrays, etc. 

Microarrays have been used in various biomedical applications such 
as gene discovery [Chu et al., 2005], disease diagnosis [Gabriele et al., 
2006], phamacogenomics (drug discovery) [Levy, 2003], and toxicology 
[Vrana et al., 2003].  For example, microarrays are used to identify 
disease genes by comparing gene expression patterns in disease and 
normal cells. They can also be used as a diagnosis tool by checking 
possible abnormal gene expression for a disease.  Readers can find more 
information about microarrays in [Baldi and Hatfield, 2002; Blalock, 
2003; http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html].  

In this chapter we review several fuzzy processing algorithms for 
microarray data such as fuzzy C-means, relational fuzzy C-means and 
fuzzy co-clustering for gene selection and patient classification.   
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5.1.1 Microarray data description 

The typical microarray dataset is shown in Table 5.1.  It contains M 
samples (microarray chips, patients), each sampling the expression of N 
(typically from thousands to tens of thousands) genes.  The expression 
values of a gene across different samples (a row in Table 5.1) are called 
the "gene expression profile".  The expression profile of gene i is a 
vector xi∈RM.   

Table 5.1 Gene expression data matrix. 

 Sample 1 ... Sample j ... Sample M Gene 
Expression  
Profile 

Gene 1 x11 ... x1j ... x1M x1 
... ... ... ... ... ... ... 
Gene i xi1 ... xij ... xiM xi 
... ... ... ... ... ... ... 
Gene N xN1 ... xNj ... xNM xN 
Patient 
Expression  
Profile 

p1 ... Pj ... pM  

 

Each microarray chip samples the expression of N genes.  The dataset contains M (<< N) 
samples (microarray chips).  Row i is the expression profile of gene i and is represented 
by a vector xi∈RM; column j is the expression profile of sample (patient) j and is 
represented by a vector pj∈RN. 

A typical expression profile is represented in Figure 5.2.  Similarly, 
we can define a sample (patient) expression profile (a column in Table 
5.1).  The expression profile of patient j is a vector pj∈RN.  

To obtain a microarray expression dataset similar to the one shown in 
Table 5.1, several preprocessing steps, such as image processing and data 
normalization, are required.  The image processing and the DNA 
fragment count for each spot is usually performed by the software 
included in the microarray reading device. The microarray normalization 
(both across genes and across samples) depends on the experimental 
design method and it is usually performed on a case-by-case basis.  The 
normalization step deserves a special consideration, particularly for the 
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Expression Value 

... 

Samples 

S1  S2   S3            ...                SM-1 SM    Samples 

case of cDNA microarrays where there is more flexibility in the 
experimental design methodology.  In this chapter, we assume that the 
dataset has been normalized and has the form shown in Table 5.1.  For 
more details about microarray experimental design and normalization, 
we refer the reader to [Quackenbush et al., 2002; Yang et al., 2002; Lee, 
2004].  For a cDNA microarray the normalization step includes the 
merging of the two channels labeled with different dyes (red and green).  
A popular merging strategy is to compute at each spot the value 

)/(log2
green
ij

red
ijij xxx =  where red

ijx  and green
ijx is the median intensity of 

the related channels at location ij. 

 

 
 

 
 
 

 
 
Figure 5.2 Typical gene expression profile.  A gene can be represented as a 2-D curve or 
as a point in RM. 

 
The samples that represent the same condition of the organism (say 

follicular lymphoma), but extracted from different individuals, are called 
biological replicates.  Often, the samples from a dataset represent several 
conditions (typically two; for example, "follicular lymphoma" and 
"normal" patients), each containing a number of biological replicates.  
An alternative way of obtaining a dataset similar to the one shown in 
Table 5.1 is to sample the same cell population at different points in 
time.  Consequently, a time series of expression values (usually 10 to 20) 
for each of the N genes is obtained. 

In the majority of applications, microarrays are used to address the 
following issues: (1) find the differentially expressed genes between 
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conditions, as found in gene selection or biomarker identification, (2) 
find natural groupings among genes, conditions or both, (3) train a 
classifier to recognize a given condition using gene expression, and (4) 
find the regulatory relationship among a given set of genes. 

5.1.2 Microarray processing algorithms for gene selection and patient 
classification 

Traditional methods for finding genes that have a high expression in one 
condition and a low expression in another (referred to as differentially 
expressed genes) are statistical tests (such as t-test and Wilcoxon rank 
sum test), crisp clustering (such as K-means and hierarchical clustering), 
and self organizing feature maps (SOFM) [Lee, 2004].  Fuzzy 
approaches to finding differentially expressed genes are based on fuzzy 
rules and fuzzy clustering.  What is the motivation for using fuzzy 
approaches for gene discovery instead of the traditional ones? We 
mention three reasons here.  First, fuzzy rules represent a more human-
readable method for gene selection than that provided by traditional 
statistical tests.  For instance, it is easier to understand a rule such as: 
"The expression level of gene A is HIGH in disease D1 and is LOW in 
disease D2 with confidence C" instead of a t-test value of 1.2.  Second, 
fuzzy clustering algorithms are able to model genes that belong to 
several groups (clusters) simultaneously.   This is important since a gene 
may have alternate roles under different conditions depending on which 
transcription factor regulates its expression [Gasch and Eisen, 2002].  
Hence, it may be similarly expressed in more than one group of genes.  
This fact cannot be modeled using crisp clustering algorithms such as K-
means and hierarchical clustering where a gene belongs exclusively to a 
single cluster.  Third, fuzzy approaches account for noise in the data 
because they extract trends rather than precise values [Woolf and Wang, 
2000]. In section 5.2 we will describe several fuzzy clustering algorithms 
used for finding differentially expressed genes.  

Various methods for patient classification based on gene expression 
exist, such as neural networks, support vector machines and k-nearest 
neighbors [Lee, 2004].  The advantage of fuzzy classification approaches 
like fuzzy rule systems and the fuzzy k-nearest neighbor (FKNN) 
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algorithm is that they are more transparent than their crisp counterparts 
while allowing each sample (patient) to have a certain degree of 
membership in each condition.  At this point we would like to caution the 
reader when using sample (patient) classification algorithms based on 
gene expression.  In view of the fact that training data is very limited 
(perhaps 100 samples) and the dimension of the feature space is very 
high (20,000 to 100,000 genes), one can only wonder how any 
classification algorithm is able to reasonably sample the search space.   
Obviously, the previous cautionary note will not hold if the "silver 
bullet" feature is found; that is, the gene that alone can differentiate 
between conditions.  While this biomarker might exist in some genetic 
diseases, it does not generally appear in most of the microarray datasets 
where complex gene networks are involved in producing differential 
gene expression. 

5.1.3 Microarray processing algorithms for gene regulatory network 
discovery 

Microarrays have been used alone or in conjunction with other data 
sources (such as protein-protein interactions) to discover new gene 
regulation mechanisms.  Several methods have been proposed to develop 
gene interaction networks including linear equations, differential 
equations, and Boolean networks [Ressom et al., 2003].  Differential 
equations are the most exact method but they are not able to model a 
large number of variables simultaneously.  Boolean networks assume 
that genes are either "on" or "off", a fact that contradicts biological 
reality.  Unlike Boolean networks, fuzzy rule approaches assume 
different levels of transcription such as LOW, MEDIUM, and HIGH 
each modeled over a continuum of possible values.  A fuzzy rule 
approach to discovering gene regulatory networks is described in section 
5.3. 
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5.2 Clustering Algorithms 

Clustering is a way of analyzing a set of objects by separating them into 
groups.  Clustering algorithms are based on the notion of similarity.  The 
assumption is that similar objects end up in the same group; hence, we 
can infer some common properties for the objects in each cluster.  
However, clustering of objects depends strongly on the similarity 
measure used to compare them.  Moreover, the similarity measure (or its 
dual, the distance measure) determines the shape of the cluster.  For 
example, in a two dimensional space (R2), the Euclidean distance (L2-
norm in R2) produces "circular" clusters while the city block distance (L1-
norm in R2) produces "diamond" clusters.  We describe more microarray 
similarity measures (distances) in the next section. 

There are several modalities in which microarray data can be 
clustered.  First, by clustering the gene expression profiles (rows of 
Table 5.1), we can discover genes co-regulated (up or down) in a certain 
group of samples.  In Figure 5.3 a group of chromatin related genes were 
found after gene clustering to be under-expressed in several sample 
groups and over-expressed in others (circled).  As mentioned previously, 
if a gene is regulated by several transcription factors depending on the 
condition of the organism, it reasonably belongs to several clusters 
simultaneously [Gasch and Eisen, 2002].  Such a case requires a fuzzy 
approach such as the fuzzy C-means (FCM) or, even more suitable, the 
possibilistic C-means (PCM).  We will discuss the differences between 
the FCM and PCM in the Section 5.2.2. 
 

 
Figure 5.3 Sample microarray data before (left) and after (right) gene clustering 
(red=over-expressed gene, green=under-expressed gene, black=similar expression in both 
condition).  After clustering, a group of chromatin related genes were found to be under-
expressed in several groups of samples and over-expressed in others (circled). 
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The second way in which the data can be grouped is by clustering the 

samples (patients, columns of Table 5.1).  This might be necessary when 
subgroups of a certain condition (disease) need to be discovered.  In 
addition, the sample dimension is used when a classifier is trained to 
recognize the condition of a patient based on the gene expression data. 

The third way of grouping the data shown in Table 5.1 is to 
simultaneously cluster the rows (genes) and columns (samples, patients).  
This clustering approach is known as co-clustering (a.k.a. two-way-
clustering or bi-clustering).  By co-clustering, one tries to identify groups 
of genes associated with group of samples (patients).  In this case, we 
could discover the genes responsible for a certain sub-condition (for 
example, a subgroup of follicular lymphoma patients that respond well to 
treatment).  As opposed to crisp co-clustering algorithms [Cheng and 
Church, 2000] where a gene and a patient must belong only to a given 
co-cluster, in fuzzy co-clustering they can both belong to multiple co-
clusters simultaneously.  A fuzzy co-clustering algorithm will be 
presented in Section 5.2.4.  

The clustering of genes or samples can be performed in two basic 
ways, which result in two classes of clustering algorithms - object data 
and relational data approaches.  In the object data approach, the genes are 
clustered based on their expression profiles (see Figure 5.2).  Each gene i 
is represented by a point xi∈RM, where M is the number of samples.  In 
this case, the input of the clustering procedure consists of the object data 
{xi}i=1,N.  The best known object data fuzzy clustering method is fuzzy C-
means (FCM).  The FCM algorithm was introduced in Section 2.6.1.  In 
Section 5.2.2 we present more details related to the application of FCM 
to microarray data.  

A second clustering approach utilizes either a distance or dissimilarity 
matrix between the genes or patients.  Because these methods only use 
the dissimilarity between the objects, they are called relational 
approaches.  A relational clustering algorithm called Non-Euclidean 
Relational Fuzzy C-means (NERF C-means) [Hathaway and Bezdek, 
1994] will be presented in Section 5.2.3. 

As mentioned in the beginning of this section, the type of similarity 
(distance) measure employed in clustering greatly influences the results.  
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In the next section we give several similarity (dissimilarity) measures 
used for microarray clustering. 

5.2.1 (Dis)similarity measures for microarray data 

Let xi=(xi1 ... xiM) and xj=(xj1 ... xjM) be the expression profiles of gene i 
and j, respectively.  There are many possible choices for calculating the 
similarity between two gene profiles [Xu and Wunsch, 2005].  In what 
follows, we discuss gene profile similarity but note that sample (patient) 
profiles could be used interchangeably.  

The correlation (cosine) similarity between gene i and gene j is 
defined as [Gasch and Eisen, 2002]: 
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The correlation similarity captures the shape similarity between the 
two expression profiles regardless of the magnitude of the expression 
levels.  In addition, this similarity ignores the dependence of the gene 
correlation on the absolute expression level.  That is, the correlation 
between two highly expressed genes should be significant while the same 
value obtained between two poorly expressed genes should not be 
significant [Lee 2004].  The correlation similarity measure is suitable 
when one is interested in comparing the shape of the expression profiles 
as a result of changes in regulation mechanisms [Gasch and Eisen, 2002].  
The correlation dissimilarity, dc, is obtained by dc=1-sc. 

Another version of the above similarity is the Pearson correlation, in 
which the mean expression value is subtracted from each profile.   The 
Pearson correlation is defined as: 
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where μi, μj are the mean values of the expression profiles xi, xj, 
respectively. 

The Spearman correlation is similar to the Pearson correlation except 
that is based on the ranks (obtained by sorting) of the expression values 
in a profile instead of the values themselves.  This makes the Spearman 
correlation less sensitive to outliers.  The Spearman correlation similarity 
between two gene expression profiles xi and xj can be calculated as: 
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where rik and rjk are the rank of the k-th element of xi and xj, respectively. 
Euclidean distance was also used in clustering gene expression 

profiles [Dembele et al. 2003, Belacel et al. 2004].  The Euclidean 
distance (see also Section 2.6) between two expression profiles is: 
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The Euclidean similarity is computed as se=1/(1+de).   Since the 
Euclidean distance is scale dependent, the expression profiles might 
require normalization such as mkiiikx ,1}/){( =− σμ , where iμ and iσ  are 
the mean and standard deviation of the expression profile xi, respectively.  
Euclidean distance is the most utilized measure for comparing expression 
profiles for both genes and samples (patients).   

Euclidean distance assumes that the gene profiles are uncorrelated, 
resulting in spherical shaped clusters.  To obtain ellipsoidal clusters, we 
use the Mahalanobis distance (see also Equation 2.10) that is defined as: 
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where Σ-1 is the inverse of the covariance matrix of the data set.  The 
covariance matrix, Σ, is computed (see also Equation 2.11) as: 
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where μ is the average gene expression profile, that is, 
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The city block distance [Lee 2004] is defined as: 

 ∑
=

−=
M

k
jkikjib xxd

1

||),( xx . (5.8) 

 
Example 5.1 Similarity calculation for the GD30 data 

We generated simulated gene expression profiles for the GD30 genes 
(N=30) used in Chapter 3.  Each profile is 20 samples (M=20) long and is 
hypothetically divided in two groups: "normal" patients (first 10 
samples) and "cancer" patients (last 10 samples).  The profiles were 
generate such that  

- the anti-apoptotic genes (first 10 genes)  have a low expression in 
the "normal" patient group and have a high expression in the "cancer" 
group; 

- the pro-apoptotic genes (genes 11 to 20) have a high expression in 
the "normal" patient group and have a low expression in the "cancer" 
group; 

- the other apoptosis related group (genes 21 to 30) have a medium 
expression in both patient  groups. 

The resulting simulated microarray "chip" is shown in Figure 5.4.  
The data will be further denoted as GD30.  
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Figure 5.4 The simulated microarray data (GD30) used throughout this chapter. 
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Figure 5.5 Similarity matrices for the GD30 data calculated using the measures 
mentioned in this section. 
 

In Figure 5.5 we show the similarity matrices calculated with the 
measures mentioned in this section.  From visual inspection of the 
similarity matrices, we are inclined to say that the correlation similarity 
differentiates the three types of gene profiles better than the Euclidean 
similarity.  Aside from display considerations, we will see in Example 
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5.3 that using a clustering algorithm might lead us to a different 
conclusion.  The Mahalanobis similarity (Figure 5.5.f - Equation 5.5) 
does not seem to differentiate at all between profiles.  Normalization of 
profiles before calculating the similarity (by subtracting the mean and 
dividing by the standard deviation) did not seem to affect the Euclidean 
similarity significantly. 

5.2.2 Fuzzy C-means (FCM) 

The Fuzzy C-means (see Section 2.6.1 for details) has been extensively 
employed for clustering gene  expression profiles obtained from 
microarray data [Gasch and Eisen, 2002; Dougherty et al., 2002; Wang 
et al. 2003; Dembele et al. 2003; Arima et al. 2003; Belacel et al. 2004; 
Asyali et al. 2005].  Xu et.al. [2005] pointed out some issues related to 
successfully employing the FCM such as algorithm initialization 
(defining initial partition), sensitiveness to noise and outliers, 
convergence  often to a local minimum, and difficulty in choosing the 
fuzziness parameter m. 

Gasch and Eisen [2002] addressed the initialization issue by using the 
eigenvectors that resulted from a principal component analysis (PCA) of 
the gene expression data among the initial cluster centers.  The 
convergence problem was addressed by using a high number of initial 
cluster centers (around 200) and applying three FCM cycles sequentially.  
After each cycle, duplicate cluster centers (pairs whose Pearson 
correlation was greater than 0.9) are averaged.  In addition, only the 
genes with a Pearson correlation less than 0.7 within any of the cluster 
centers were left to be further clustered in the next FCM cycle. 

Wang et al. [2003] dealt with the noise problem for clustering patient 
profiles by first preprocessing each patient expression profile using self 
organizing feature maps.  Consequently, each patient expression profile 
was reduced to an n1×n2 feature map (a total of 50 to 100 nodes), 
resulting in M such feature maps.  Next, FCM was applied on the M-
dimensional feature vectors in order to identify clusters of genes that 
mapped into adjacent areas of the SOFM. 

Belacel et al. [2004] employed two heuristics, called J-means and 
variable neighborhood search (VNS), to address the convergence of the 
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regular FCM to local minima.  In the J-means heuristics, the new 
centroids are chosen from the data points that are in the neighborhood of 
the current solution.  The VNS, on the other side, is a metaheuristics that 
searches for more distant solutions, possible better than the local ones 
provided by the J-means.  The J-means heuristics uses a reformulated 
objective function that depends only on the cluster centers (centroids) as: 
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The pseudo-code for the fuzzy J-means algorithm is given below. 
 

BEGIN 
      -Choose K of the N gene profiles {xi} as cluster centers, 

Copt={ck}k=1,K; 
 -Compute )( optm

old
opt CRR = using (5.9) and set old

optR =1010; 
 -Choose: 
  -stopping constant ε ,  
  -maximum search neighborhood size qmax; 
 WHILE ε>− )( new

opt
old
opt RR  DO 

  q=1, new
opt

old
opt RR = . 

  WHILE q<qmax DO 
     -Replace at random q new centroids from the unassigned {xi} 
     -Drop least useful centroid cd (that produces the greatest 
        increase in Rm); 
     -Add most useful available pattern xu (that produces the     

      smallest increase in Rm) as centroid; 
     -Recalculate m

new
opt RR = ; 

     -IF ε>− )( new
opt

old
opt RR   

   reset q=1; 
   new

opt
old
opt RR = ; 

     ELSE 
   q=q+1; 
     END IF 
  END WHILE 
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 END WHILE 
 -Compute fuzzy memberships ujk using (2.9)  
END  
 

Dembele et al. [2003] proposed calculating the fuzziness parameter 
as a function of the coefficient of variation of the set of distances 
between the gene expression profiles, ]},1[,;|{ )1/(2 NjijidD m

ij ∈≠= − .  
The coefficient m is computed by numerically solving the equation 

mDD 03.0/ =μσ , where Dσ  and Dμ  are the standard deviation and the 
mean of the set D, respectively. 

As in any clustering algorithm, one problem that requires special 
attention is noise and outlier handling.  In FCM, the outlier handling 
concerns are raised by the constraint (Equation 2.6) that the memberships 
in clusters for each point should sum to 1.  Several solutions to this 
problem have been proposed in the literature [Dave, 1991; Krishnapuram 
and Keller, 1993].  Dave [1991] used an extra noise cluster represented 
by a prototype (cluster center) that has the same distance, δ, to any data 
point.  This choice is based on the assumption that outliers are 
equidistant to the center clusters (fact that might not be true in all cases).  
In this case the cluster memberships (Equation 2.9) become: 
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where the noise distance δ is computed as: 
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with λ a scale parameter. 
Another possible solution was given by the possibilistic C-means 

algorithm (PCM, Section 2.6.3) [Krishnapuram and Keller, 1993].  PCM 
removes the membership summation constraint (Equation 2.6) and 
allows each object to belong to any of the clusters with a membership uij 
∈[0,1].  Aside from dealing with noise, this seems to be the natural 
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solution for many bioinformatics problems.  Following the example 
given in [Gasch and Eisen, 2002], if a gene is controlled by several 
transcription factors then it should have a high membership (say, equal to 
1) in any of the corresponding clusters and a low one in all of the others.  
A similar interpretation is valid for the case of clustering of genes in 
families.  A gene should be able to belong to several families (clusters) 
with membership 1, while another gene might not belong to any family 
represented in the data set (membership close to 0 in all clusters). 

 
Example 5.2 FCM on the GD30 data. 

We applied FCM with C=3 clusters on a slightly modified version of 
the GD30 data from Example 5.1.  In order to demonstrate the danger of 
outliers in FCM, we modified the profile of gene 21 (the first gene from 
the "other apoptosis related genes" group, class 3) by setting it to a "very 
high" expression in both "normal" and "cancer" groups.  The modified 
gene profile is clearly an outlier, as can be seen in Figure 5.6 of the 2-
dimensional representation of the data obtained by applying principal 
component analysis (pointed at with an arrow in Figure 5.6). 

 
Figure 5.6 The GD30 was represented in 2 dimensions by performing principal 
component analysis and keeping only the first 2 components.  The outlier gene is 
indicated by arrow. 
 

The cluster memberships produced by FCM are shown in Figure 5.7.  
We see that the membership of the outlier in the pro-apoptotic group 
(dotted arrow) was slightly higher (0.4) than in the anti-apoptotic and 
apoptosis related groups (0.3 in each).  As a consequence, the outlier 
would be erroneously assigned to class 2 when the membership array is 
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hardened (cluster assignment performed based on maximum 
membership).  One of the greatest advantage of FCM over the hard C-
means, is that the former allows us to tell that the assignment of this 
outlier was a close call.  One easy way to use this information during the 
cluster assignment step (membership hardening) is to avoid to assign a 
point to clusters (hence labeling it as "outlier") if its maximum 
membership does not exceed a given threshold (say, 0.5 in our case). 

 

Figure 5.7 The memberships produced by FCM with C=3 on GD30 data.  We see that the 
first gene in class 3 ("apoptosis related" genes, dotted arrow) was erroneously assigned to 
class 2 ("pro-apoptotic" genes).  The sixth gene in class 3 (continuous arrow) was also 
erroneously assigned to class 1. 

Moreover, having continuous memberships allows us to pass the 
"closeness" information to other algorithms downstream that are part of 
the same computational pipeline.  This point is clearly demonstrated in 
Section 2.6.1. 

5.2.3 Relational fuzzy C-means 

Several fuzzy relational algorithms have been described in the literature 
such as fuzzy C-medoids [Krishnapuram et al., 2001], relational fuzzy 
clustering [Dave et al., 2002] and relational fuzzy C-means [Bezdek et 
al., 1999].  Out of the many versions of the relational fuzzy C-means 
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(RFCM) algorithms presented in [Bezdek et al., 1999] we will further 
describe the non-Euclidean relational fuzzy C-means (NERFCM) 
algorithm [Hathaway et al., 1994], a general method applicable to 
numerous situations. 

Let D be the matrix of dissimilarities between a set of objects.  For 
instance, for the set of samples (patients) {pj}j=1,M the distance matrix 
is ]},1[,|{ MjidD ij ∈=  where dij=dist(pi,pj) and "dist" is one of the 
distances mentioned in section 5.2.1.  If D is computed starting from the 
object data using some distance measure (as in the previous example), 
then D is called Euclidean (that is, the triangle inequality is satisfied).  If 
D is computed using some similarity measure (such as computing 
sequence similarity using BLAST) then it might not be Euclidean; that is, 
one might not find M vectors whose pair-wise distance matrix equals D.  
We mention that the problem of finding object data given their 
dissimilarity matrix is addressed by multi-dimensional scaling (MDS) 
methods [Cox and Cox, 2001].  MDS could be used in an alternative 
approach to clustering relational data; that is, after finding the objects 
whose dissimilarity matrix is D, one can apply any object data fuzzy 
clustering algorithm.  

In order for NERFCM to work, D has to satisfy three conditions: 
 1. djj=0, for all j∈[1,M], 
 2. djk≥0, for all j,k∈[1,M], 
 3. djk=dkj, for all j,k∈[1,M]. 
NERFCM is an iterative algorithm.  In each iteration, the 

dissimilarity matrix D is first readjusted using a β-spread transform 
computed using the average membership in a cluster, vi, i=1,C.  Then, 
the membership matrix U is recomputed based on the adjusted 
dissimilarities.   The detailed steps of the NERCM algorithm are as 
follows: 

 
BEGIN 
    -Choose number of clusters C∈[2,M) , fuzzifier m>1 and stopping 

 threshold ε. 
    -Initialize the cluster membership matrix U={uik}, i∈[1,C],  

 k∈[1,M] and parameter β=0. 
    -DO UNTIL ε≤− )()( newold UU  
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  FOR each i∈[1,C], compute the "C-means" vectors as: 
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  END FOR i 
       FOR each cluster i  
      FOR each point k 
  -Re-compute the distances dik: 
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t
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  -IF dik<0 THEN matrix D is not Euclidean 
      END FOR k 
  END FOR i  
  IF D is not Euclidean  

   - adjust parameter β as:  βββ Δ+=  
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  - Re-computed the dik as: 
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  END IF 
  FOR each cluster i  
       FOR each point k 

  Re-compute the cluster memberships {uik} as: 
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       END FOR k 
  END FOR i 
    END DO UNTIL  
END 
 

Example 5.3 NERFCM of the GD30 data. 
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Figure 5.8 The NERFCM cluster memberships for the correlation dissimilarity.  All the 
genes from the "apoptosis related" group (samples 20 to 30) were wrongly clustered. 

 
Figure 5.9 The NERFCM cluster memberships for the Euclidean similarity.  All the 
genes from the "apoptosis related" group (x-marker) were correctly clustered. 
 

For this example we used the correlation similarity for GD30 profiles 
(no outlier, see Figure 5.5.a) to obtain a dissimilarity matrix.  We ran 
NERFCM with C = 3, m = 1.5, ε = 0.001.  The resulting cluster 
memberships for the correlation similarity are shown in Figure 5.8.  
While the first two classes were clustered in the expected cluster, the 



Applications of Fuzzy Logic in Bioinformatics 
 
152 

"noise" class elements (apoptosis related genes) were clustered 
erroneously as either anti-apoptotic or pro-apoptotic.  Is this due to the 
NERFCM or due to the correlation similarity?  If we analyze Figure 5.9, 
where the NERFCM memberships for the Euclidean distance are given, 
we see the problem resides in the correlation similarity. 

Both object and relational clustering are very useful in 
bioinformatics.  Since the relationships between data, clustering 
algorithm and dissimilarity are complex, care must be taken to not "read 
too much" into the output of any given choice. 

5.2.4 Fuzzy co-clustering algorithms 

Many co-clustering techniques have been used for biological data 
analysis [Madeira and Oliveira 2004].  Cheng and Church [2000] 
employed a mean squared residue method to cluster a yeast cell cycle 
microarray data set.  Getz et al. [2000] used an alternate row-columns 
hierarchical clustering algorithm, CTWC, to analyze microarray data.  
Lazzeroni and Owen [2000] introduced a plaid model for co-clustering 
where the value of an element in a co-cluster is modeled as a sum of 
layers. 

Fuzzy co-clustering algorithms have been applied for simultaneous 
clustering of documents and words in text mining applications [Oh et al., 
2001; Frigui et al., 2002; Kummamuru et al., 2003; Tjhi and Chen, 
2006].  Aside from normalization and data dimension issues, clustering 
documents and words is similar to clustering patients and genes, 
respectively.  To the best of our knowledge, fuzzy co-clustering has not 
been applied so far to microarray data. The fuzzy co-clustering 
algorithm, FCCM, introduced by Oh et al. [2001] is described in the 
remainder of the section, followed by an example on our GD30 dataset. 

We define constraints on the memberships of a patient i and a gene j 
to a co-cluster c as: 
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where uci, wcj are the memberships of the ith patient and of the jth gene in 
the cth co-cluster, respectively.  The objective function for FCCM can be 
written as: 
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where Tu and Tw are weighting parameters which specify the degree of 
fuzziness.  By applying the Lagrange multipliers method to the above 
objective function, we find the necessary condition for the patient i and 
gene j memberships in the co-cluster c as: 
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In order to avoid overflows, for large N, care should be exercised when 
computing the gene memberships, wcj.  One solution is to reduce N by 
prescreening the genes before applying FCCM.  If the number of genes is 
still large, we can use alternative algorithms such as Fuzzy-CoDoK 
[Kummamuru et al., 2003] or FCC-STF [Tjhi and Chen, 2006] that 
reportedly do not exhibit this problem.  The pseudo-code for the FCCM 
algorithm is: 
 

BEGIN 
 -Choose C, Tu, Tw and ε. 
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 -DO UNTIL ε<− ||max OLD
ci

NEW
ci uu  

        FOR each cluster c=1,C 
  -FOR each patient i=1,N 
      Update patient memberships using uci (5.15) 
                     END FOR i  
  -FOR each gene j=1,M 
      Update gene memberships wcj using (5.16) 
  END FOR j 
        END FOR c 
 END DO 
END 
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Figure 5.10 The rearranged GD30 data as a result of applying FCCM with C=3 on the 
GD30 data.  Two co-clusters (marked with "1" and "2") were identified. 
 
Example 5.4 Fuzzy Co-clustering of the GD30 data 

We co-cluster the GD30 profiles (no outlier) with the FCCM 
algorithm.  We used the following values for initialization: C=3, Tu=1, 
Tv=TuN/M and  ε=0.00001.  After convergence of FCCM, we performed 
a gene assignment to the three co-clusters.  The cluster assignment of 
gene j was obtained by finding argmaxc=1,C{wcj} resulting in the 
following gene (rows) assignment {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 1, 2}.  Similarly, patients were assigned 
to co-clusters.  The cluster assignment of patient i was obtained by 
finding argmaxc=1,C{uci}.  The resulting assignment for the patients 

2 

1 
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(columns) was: {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}. 
Using the above assignments to re-arrange the rows and columns we 
obtain the co-clusters shown in Figure 5.10. 

It is interesting to note in Figure 5.10 that third co-cluster does not 
have any column assignments although it has a gene assignment (last 
row in Figure 5.10, which was gene number 28 in the initial GD30).   

5.3 Inferring Gene Networks Using Fuzzy Rule Systems 

The genes active in a given cell interact to form a complex regulatory 
network.  The gene regulatory network (GRN) dynamically establishes 
the level of expression of each gene as a function of the state of the cell 
(internal conditions) and of the environment (external conditions).  That 
is, the expression of each gene at a given time is a function of internal 
(expression of other genes) and external conditions.  As a consequence, 
theoretically, one can use the gene expression levels to infer, by reverse 
engineering, the connection between genes for different cell types 
(normal or abnormal) or different environmental conditions (i.e. day or 
night).  While theoretically this approach is appealing, it presents two 
major challenges [Guthke et al., 2005].  First, microarray data is noisy, 
hence the inferred connections are not necessarily reliable .  Second, the 
data is insufficient for inferring all existing connections, since a N×N 
interaction matrix mast be estimated using only N×M data points, where 
M<<N. 

Fuzzy logic provides the mathematical framework to better address 
the first challenge than do statistical methods, due to its ability to 
qualitatively deal with noisy data [Sokhansanj et al., 2004].  As we 
described in Section 2.5, instead of using a real number, a fuzzy rule 
system typically uses three levels to describe the expression value: LOW, 
MEDIUM and HIGH.  As a consequence, the variation present in the 
data due to noise is ameliorated.  Among the approaches that used fuzzy 
rule systems to infer GRNs, we mention [Woolf and Wang, 2000; 
Ressom et al., 2003; Sokhansanj et al., 2004].  Woolf and Wang used an 
intersection fuzzy rule system (IFRS) to find activator-repressor-target 
triplets in yeast cell cycle microarray data.  An IFRS is a fuzzy rule 
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system with rules of the form "IF (expression of) A is High and 
(expression of) B is Low THEN (expression of) C is High".  Ressom et 
al. improved the speed of the previous algorithm by 50% by 
preprocessing the data using a SOFM.  The problem with this approach 
is that IFRS is limited to two or three inputs due to the combinatorial 
explosion of the number of rules.  To address this difficulty, Sokhansanj 
et al. used a union fuzzy rule system (UFRS) to determine the 
relationships between 12 yeast cell cycle genes.  An UFRS will break the 
above intersection rule in two: "IF A is High THEN C is High" and "IF 
B is Low THEN C is High".  While this approach is simpler, it assumes 
that the inputs, A and B, are essentially independent (noninteractive).  
Reportedly, this might not be a bad assumption given the fact that nature 
usually favors simple mechanisms (Occam's razor) [Guthke et al., 2005]. 

To address the second challenge, bioinformaticians usually employ 
some dimensionality reduction technique such as fuzzy clustering [Gutke 
et al., 2005; Sehgal et al., 2006; Du et al., 2005] or self organizing maps 
(SOM) [Ressom et al., 2003].  Gutke et al. employed FCM to cluster the 
gene expressions and then they used differential equations to model the 
cluster centers.  After clustering the gene expressions of the plant 
Arabidopsis Thaliana using FCM, Du et al. computed the correlation 
coefficient between the cluster representatives.  A positive correlation 
was interpreted as activation and a negative one as inhibition. These 
approaches generally do not work in real applications except for some 
very simple cases.  To address the second challenge, the fuzzy logic 
framework provides a different solution in which no training data is 
necessary.  Instead, we use domain expert knowledge (gene regulation 
dynamics, in this case) to set up a fuzzy rule system.  The knowledge 
(gene relationships) is then inferred from the existent data using the 
fuzzy rule system. 

As an example, we present the work of Woolf and Wang [2000] who 
employed an IFRS of the Mamdani type (see Section 2.5) to find 
{activator (A), repressor (R), target (T)} triplets in microarray expression 
data.  A gene A is an activator for gene T if an increase in the expression 
of A induces an increase in the expression of T and vice-versa.  A 
repressor gene R has the opposite effect on T.  To model the coupled 
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effect of an activator and a repressor on a target, Woolf and Wang used 
the following fuzzy rule system: 

 IF A=High and R=High THEN T=Medium 
 IF A=High and R= Medium THEN T=High 
 IF A=High and R= Low THEN T=High 
 IF A=Medium and R=High THEN T=Low 
 IF A=Medium and R= Medium Then T=Medium 
 IF A=Medium and R= Low Then T=High 
 IF A=Low and R=High Then T=Low 
 IF A=Low and R= Medium Then T=Low 
 IF A=Low and R= Low Then T=Medium. 
The membership functions used by Woolf are as follows: 
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Figure 5.11 The control surface for the fuzzy rule system with two inputs (activator-A, 
repressor-R) and one output (target-T) [Woolf and Wang, 2000]. 
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The resulting graph of running this IFRS over all activator/repressor 

pairs FRS is shown in Figure 5.11.  
Note that the fuzzy rule system with only 9 rules provides a smooth 

output function, addressing the issue of noise in microarray data. 
 

  
 a. fuzzy rule system input  b. fuzzy rule system output 
 
Figure 5.12 An example of (activator, repressor, target) found in the GD30 data at a 10% 
relative squared error threshold; in a. the inputs of the FRS are shown; in b. the FRS 
output (triangles) is compared to the observed gene expression profile (circles). 
 
Example 5.5 Finding (activator, repressor, target) in the GD30 data 

To find the (activator, repressor, target) triplets in the GD30 data we 
interpret it as the profiles of 30 genes at 20 time steps.  To find the 
triplets that match the desired network dynamics, we have to try all 
possible combinations of profiles.  Three random chosen gene profiles 
are shown in Figure 5.12.  In Figure 5.12.a we show the repressor and the 
activator and in 5.12.b we show the “observed” target. All three 
expression profiles have to be first normalized (only thresholded in our 
case) such that they match the range [0,1] of the membership functions 
used in the IFRS (Equation 5.16).  The activator and the repressor 
profiles (see Figure 5.12.a) are used to calculate the target (Figure 
5.12.b-“calculated”) at each time step using the IFRS previously 
described.  For instance, at step t=10, the input values A=1 and R=0.55 
(Figure 5.12.a) result in (using the output function from Figure 5.10) an 
output T=0.7 (Figure 5.12.b).  Then, the calculated target is compared to 
the observed one (see Figure 5.12.b).  If the relative square error between 
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the two target profiles is smaller than a certain threshold (10% in our 
case), the triplet is recorded as a possible (activator, repressor, target) 
network.  An example of such a network is shown in Figure 5.12. 

5.4. Discussion and Summary 

In this chapter we presented several fuzzy techniques for processing of 
microarray data.  Fuzzy clustering is, by far, the most important 
technique of all, due to its property of multiple cluster memberships that 
matches the biological foundations of gene expression.  We have shown 
that although useful, all clustering and fuzzy clustering in particular, has 
its pitfalls such as noise sensitivity and dependence on the distance 
measure employed.  When using a clustering algorithm, we have to 
understand its intricacies since there is no such thing as the "best 
clustering algorithm" but only a "suitable for the data" one.  

In the end, we have shown how fuzzy rule systems can be used in 
inferring gene regulating networks.  A fuzzy rule system represents a 
modality to use expert knowledge in finding patterns in data. 
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Chapter 6 

Other Applications 

6.1 Overview 

Fuzzy set theory and fuzzy logic, like many other computational 
intelligence methods, can be used for a wide range of bioinformatics 
problems. In this book, we have addressed applications of fuzzy 
approaches in ontology, protein structure prediction, and microarray data 
analysis. In this chapter, we will summarize some other applications. 

We will focus on the applications on biological sequence analyses, 
computational proteomics, drug design, and biomedical text mining. 
Each of these four areas represents important bioinformatics research and 
has significantly utilized fuzzy set theory and fuzzy logic. We will also 
briefly touch a few other areas, where a limited number of fuzzy 
approaches have been deployed. 

There are a number of pertinent reviews. The paper by Torres and 
Nieto [2006] provides an overview on the application of fuzzy logic in 
medical informatics and bioinformatics. It shows two examples with 
some details, i.e., drug addiction and genome comparison. Another 
review by Mitra and Hayashi [2006] has a brief summary on the 
application of fuzzy sets in bioinformatics, together with applications of 
other soft-computing techniques such as artificial neural networks and 
evolutionary computing. The authors of this book also briefly reviewed 
the applications of fuzzy logic in bioinformatics [Xu et al., 2006]. 
Nevertheless, none of the previous reviews has the breath of depth on the 
subject like this book. 
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6.2 Applications in Biological Sequence Analyses 

Biological sequences, as described in Appendix I, are the most 
fundamental objects for biological systems at the molecular level. 
Biological sequences range from a gene sequence (in the form of DNA, 
RNA, or protein) to the whole genome. A gene sequence encodes all the 
information related to the structure and function of the gene product 
(protein). The genome sequence is also called the blueprint of life and it 
defines a biological species. Thanks to the Human Genome Project and 
various other genome projects, massive biological sequence data have 
been generated and are being produced at an exponential rate. Hundreds 
of genomes have been completely sequenced, including human, mouse, 
rice, worm, and many bacteria. It is projected that more than 10,000 
genomes will be sequenced in a decade. Various sequencing efforts have 
also produced a tremendous number of sequences of DNA segments and 
proteins. 

Given vast amounts of biological sequences available, it is impossible 
to characterize all of them experimentally. Computationally analyzing 
these sequences provides valuable information for understanding the 
biological systems. Other computational intelligence techniques, such as 
artificial neural networks and support vector machines have been widely 
applied in biological sequence analyses. Meanwhile, fuzzy set theory and 
fuzzy logic have also started gaining ground in examining biological 
sequences. 

6.2.1 Protein sequence comparison 

Comparison of biological sequences, including protein sequences and 
nucleotide sequences (DNA and RNA), is the most fundamental 
technique in bioinformatics. Comparing sequences can establish 
evolutionary relationship between different bio-molecules or different 
biological species, and as a result, infer biological structures and 
functions. Sequence comparison also offers a basis for new medical 
diagnosis and drug development, as well as bioengineering of modified 
species. It is one of the most intensive applications on many 
supercomputers.  
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The basis of sequence comparison is to match two strings with a 
scoring function of substitution, deletion or insertion of characters [4 
types of nucleotides for DNA/RNA, i.e., A, T/U, C, G (see Section AI.1), 
and 20 types of amino acids, i.e., A, C, D, E, F, G, H, I, K, L, M, N, P, Q, 
R, S, T, V, W, and Y (see Section AI.2)]. Such a problem can be 
addressed with the dynamic programming technique and its variants 
(especially BLAST [Altschul et al., 1990]).  

Sequence comparison methods are developed based on the longest 
common substring (LCS) problem in computer science. The LCS 
problem can be formulated as follows: given two sequences of 
characters, find the longest contiguous sequence appearing in both. This 
problem can be solved using dynamic programming. The comparison 
between a sequence with length m and a sequence with length n using 
dynamic programming can be done in O(mn) time. Although dynamic 
programming can compare a pair of biological sequences effectively, 
there are some issues in practical applications. 

The first issue is that sometimes a sequence may not be uniquely 
identified. In particular, with high-throughput sequencing methods, a 
position in a DNA sequence may correspond to multiple nucleotides, 
each of which has a probability (or membership value).  In this case, 
imprecise polynucleotides (words consisting of A, T, C, and G) can be 
formulated as fuzzy sets, i.e., points in a hypercube [Sadegh-Zadeh, 
2000]. The dimension of the fuzzy set for a DNA sequence with n 
polynucleotides is 4n, where each element represents the membership 
value for A, T, C, and G at one sequence position in the DNA. Sadegh-
Zadeh [2000] introduced a simple Hamming distance to measure 
dissimilarities between DNA sequences. This idea was extended from 
polynucleotides to general biopolymers (including proteins) [Casasnovas 
and Rosselló, 2005]. 

The second issue for dynamic programming in sequence comparison 
is that it is time consuming for long sequences. In particular, it is not 
feasible to apply it to compare two genomic sequences directly. Various 
simplified representations for genomes have been developed. We can use 
statistical properties of the protein-coding regions to represent a genome. 
Torres and Nieto [2003] formulated a triplet codon (see Appendix I) as a 
12-dimensional fuzzy set. Instead of projecting a genome sequence to a 
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hypercube, the authors used the frequencies of the nucleotides at the 
three base sites of a codon in the coding sequences of a genome as 
membership values in a fuzzy set. Hence, each genome is represented 
only by a 12-dimensional vector and different genomes can be compared 
utilizing these vectors. The authors applied their method to the 
Escherichia coli K-12 and Mycobacterium tuberculosis H37Rv genomes. 
Different metrics for comparing the fuzzy sets between two genomes 
were also explored in [Nieto et al., 2006]. 

The third issue with explicit sequence comparison as the LCS 
problem is that it may not be sensitive enough to detect remote 
relationships. Various approaches, such as hidden Markov models, 
attempted to code biological sequences for more sensitive detection of 
relationships.  The signal coded in a DNA sequence can be coded in the 
W-curve [Cork et al., 2002]. The W-curve is a numerical mapping of a 
DNA sequence to a profile along the sequence. It first codes the four 
types of nucleotides (A,C,G,T) as follows: A = (-1, 1), C = (-1,-1), G = 
(1, 1), and T = (1,-1). Then it maps a DNA sequence si, i = 1, 2, 3…, into 
a two-dimensional profile Xi, where Xi = k (Xi-1 + si), where X0 = (0,0) 
and k is a positive real number. For example, with k=1, one can code a 
sequence AATCGT as 

(0,0), (-1, 1), (-2,2), (-1,1), (-2,0), (1,1), (2,0) 
We can visualize the profile of Xi in a three-dimensional plot 

(together with the dimension i), which can be used to study the properties 
of a DNA sequence. Cork and Toguem [2002] formulated the W-curve 
as a fuzzy system. They used the power (or energy) derived from the 
Fourier Transform of the W-curve as the membership function. Using 
such a fuzzy system as a distance measure between DNA sequences 
improves the accuracy of the distance metric employed in sequence 
comparison and phylogenetic tree generation for genomic sequences. 
Although the fuzzy system contains less information than LSC-based 
approaches, it may better represent the key characteristics with less 
noise. 
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6.2.2 Application in sequence family classification  

Proteins can be classified into families according to their sequence 
relationships derived from sequence comparison. A protein in the context 
of its family is much more informative than the single protein itself. For 
example, residues conserved across the family often indicate special 
functional roles. Two proteins classified in the same sequence family 
may suggest that they share similar structures. Different sequence 
comparison methods produce various ways to classify protein sequences 
into families and to align the members of a family.  

Several sequence-based families are publicly available, including 
Pfam (http://pfam.wustl.edu/), ProDom (http://protein.toulouse.inra.fr/ 
prodom/current/html/home.php), and Clusters of Orthologous Group 
(COG; http://www.ncbi.nlm.nih.gov/COG/new/). These methods differ 
in the techniques used to construct families, while they all use crisp 
clustering methods.  However, these methods, although with significant 
success, do not completely solve the protein family classification 
problem, since the patterns in a given protein family may be too weak to 
detect/define. Various alternative methods are being actively explored.  

For more sensitive classification of proteins, Heger and Holm [2003] 
developed a fuzzy scoring model for assigning a query protein sequence 
into one of known families. In this model, the protein sequences in a 
known family are pre-aligned. The authors applied multivariate analysis 
to define a set of attributes for the protein family, covering a subset of 
aligned positions that are important to the protein family. Each attribute 
can be defined as a sequence pattern feature such as a particular sequence 
position, say 210, has two possible amino acid types, e.g., D and E. This 
attribute has membership values (e.g., D and E with membership values 
0.6 and 0.4) to the protein family. In this way, the dimensionality of 
sequence comparison for protein classification is reduced while the 
accuracy improves. The method has demonstrated a proof of principle in 
an extremely diverse protein family related to urease. 

Since protein family classification in essence is a clustering problem 
for protein sequences, various fuzzy clustering methods can be applied. 
Bandyopadhyay [2005] extracted a set of features from the training 
sequences for each protein family. The extracted features are represented 
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as the distribution of the amino acids in different positions of the aligned 
sequences in a protein family. Then the author applied a genetic fuzzy 
clustering approach to evolve a set of prototypes representing each 
protein family. The nearest prototype rule is used to classify an unknown 
sequence into a particular protein family, based on its proximity to these 
prototypes. Using known protein families, such as globin, trypsin and 
ras, the author showed the method significantly improved computing 
speed while providing comparable classification performance to some 
existing methods. 

6.2.3 Application in motif identification  

In a protein sequence family, some regions are better conserved than 
others during evolution. These regions are generally important for the 
function of a protein or for the maintenance of its three-dimensional 
structure. These regions can often be represented by motifs, i.e., short 
sequence segments with (nearly) conserved amino acids among related 
proteins. As motifs typically represent important biological functions, 
they can be used to assign a newly sequenced protein to a specific 
family, although false positive rates are high due to chance matches in 
short motifs. A number of motif libraries and motif-based search engines 
are available online, including PROSITE (http://au.expasy.org/prosite/), 
PRINTS (http://umber.sbs.man.ac.uk/dbbrowser/PRINTS/), BLOCKS 
(http://www.psc.edu/general/software/packages/blocks/blocks.htm), and 
the MOTIF search engine at http://motif.genome.ad.jp/ that includes 
PROSITE, BLOCKS, PRINTS, etc. combined. 

Fuzzy methods have been used for protein motif identification. 
Motifs sometimes are fuzzy or flexible, i.e., the conservations of amino 
acids do not have to be strict. Fuzzy logic was used to describe such 
flexibility of protein motifs in conjunction with neural networks [Chang 
and Halgamuge, 2002]. A neural-fuzzy network was employed to 
optimize the feature of a motif, which was represented as a fuzzy rule 
base. The algorithm was demonstrated for proof of principle using the 
well known motifs C2H2 zinc finger and epidermal growth factor motif. 
In another study, researchers combined information theory with fuzzy 
logic search procedures to identify sequence motifs [Atchley and 
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Fernandes, 2005]. The method was used to identify sequence motifs for 
the protein family related to the Myc-Max-Mad transcription factor 
network.  

Fuzzy methods have also been applied for DNA sequence motif 
identification, especially transcription factor binding sites in genomic 
sequences. These DNA motifs are represented by short nucleotide 
patterns. Genes sharing a common transcription factor binding motif may 
be co-regulated, resulting in a similar gene expression pattern (see 
Section 5.2). Pickert et al. [1998] proposed a fuzzy clustering approach 
for revealing patterns of transcription factor binding motifs. Liang et al. 
[2004] developed the cWINNOWER algorithm for fuzzy-motif detection 
in DNA sequences. It predicted motifs based on a clique consisting of a 
large number of mutated copies of the motif. The algorithm may detect 
much weaker signals in motifs. Cotik et al. [2005] proposed a hybrid 
analysis method to discover DNA motifs that combines neural networks, 
fuzzy sets, and the multi-objective evolutionary algorithms. The method 
was tested by learning and predicting the RNA polymerase motif in 
prokaryotic genomes.  

6.2.4 Application in protein subcellular localization prediction 

A protein usually localizes at a specific compartment in a cell (such as 
cell surface, cytoplasm, nucleus, etc.). Interestingly, protein localization 
strictly speaking is a fuzzy term, as some proteins can be trans-localized 
between two different compartments (especially between cytoplasm and 
nucleus).  Protein localization information is important in understanding 
protein functions.  A protein's subcellular location (or its primary 
subcellular location) can be predicted from its sequence and a wide range 
of computational techniques (such as neural networks, hidden Markov 
models, and support vector machines) have been applied to this problem.  

The fuzzy k-nearest neighbors (FKNN) algorithm has also been 
applied to predict a protein’s subcellular location [Huang and Li, 2004]. 
The authors derived a membership function for dipeptide composition of 
protein sequences in different localizations. They trained and tested their 
method using proteins with known localizations in the SWISS-PROT 
database. The overall prediction accuracy was reported about 80%. They 
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also applied their method in predicting localizations of proteins in six 
genomes including human, yeast, worm, fly, rice, and plant Arabidopsis 
thaliana. 

6.2.5 Genomic structure prediction 

A genome has a well defined structure in its sequence. It includes coding 
regions and non-coding regions (see Appendix I). A gene that codes for a 
specific protein in eukaryotes (species whose cells contain distinct 
membrane-bound nuclei, e.g., animals and plants) often has a few 
segments for coding (called exons), separated by non-coding sequences 
(called introns).  Gene finding is to identify introns and exons in a 
segment of a DNA sequence using pattern recognition algorithms. As the 
most important phase of genome annotation, gene finding facilitates the 
translation of a genomic DNA sequence into the amino acid sequence of 
a protein. Dozens of computer programs for identifying protein-coding 
genes in large genomic sequences are available. Some of the well known 
ones include Genscan (http://genes.mit.edu/GENSCAN.html), 
GeneMarkHMM (http://opal.biology.gatech.edu/GeneMark/), GRAIL 
(http://compbio.ornl.gov/Grail-1.3/), Genie (http://www.fruitfly.org/ 
seq_tools/genie.html), and Glimmer 
(http://www.tigr.org/softlab/glimmer).  

Computational gene identification from genome sequence alone (ab 
initio prediction) remains a challenging problem, especially for large-size 
eukaryotic genomes, as gene finding from various software packages 
often contain significant errors. In particular, the boundaries between 
exons and introns are often hard to define. To address this issue, 
Arredondo et al. [2005] developed a fuzzy inference engine based on 
information-theoretic considerations to predict coding regions. A set of 
rules were derived from known cases of exon-intron boundaries in the 
“if-then” format in a fuzzy way (see Chapter 2). These rules were in turn 
used for the prediction. The authors performed some simulated studies 
using human and bacterial data to illustrate the method. 

Furthermore, fuzzy models were applied to study genome structure in 
prokaryotes. In prokaryotes (species whose cells lack of distinct 
membrane-bound nuclei, e.g., bacteria), each gene for coding a specific 
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protein typically has a contiguous DNA sequence (i.e., one exon without 
any intron). A closely related group of neighboring genes on a DNA 
sequence can form an operon structure, which is regulated 
simultaneously. Jacob et al. [2005] used a fuzzy scoring function based 
on diverse biological information (e.g., genome sequences, functional 
annotations and conservation across multiple genomes) to predict 
operons. A genetic algorithm was employed to start from a population of 
putative operons in a genome into progressively better predictions. The 
method was tested on Escherchia coli K12 and Bacillus subtilis with 
good performance.  

6.3 Application in Computational Proteomics 

Proteomics is a leading technology for the qualitative and quantitative 
characterization of proteins and their interactions on a genome scale. The 
objectives of proteomics include the identification of their primary 
amino-acid sequence, large-scale identification and quantification of all 
protein types in a cell or tissue, analysis of post-translational 
modification and association with other proteins, characterization of 
protein activities and structures. Proteomics techniques, such as protein 
microarrays, electrophoresis techniques, mass spectrometry (mass-spec), 
and the yeast two-hybrid system have all been widely applied in modern 
biomedical research.  

In this section, we mainly discuss fuzzy approaches in electrophoresis 
and mass-spec analysis. On the other hand, fuzzy models could be 
broadly applied in proteomics. For example, an adaptive neuro-fuzzy 
inference system [Hering et al., 2003; Hering et al., 2004] was applied in 
Fourier transform infrared (FTIR) spectroscopy, which is a technique for 
characterization of protein secondary structure. The study shows that 
proteins can be accurately classified into two main classes "all alpha 
proteins" and "all beta proteins" (see Appendix I).  
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6.3.1 Electrophoresis analysis 

Electrophoresis analysis can qualitatively and quantitatively investigate 
expression of proteins under different conditions [Gorg et al., 2000]. 
Two dimensional (2D) electrophoresis techniques can separate extracted 
proteins in gel samples of a cell or tissue in two dimensions. Proteins are 
distributed over a rectangular area, in the form of spots, based on their 
molecular weights and forces under an electric field (characterized by the 
isoelectric point, i.e., the “pI” value). A bioinformatics problem is to map 
the gel spots to proteins in a species based on the 2D values. Analyses of 
these spots in terms of relative volume can also reveal the amount of 
expression of the proteins in the sample. Expressions of the same tissue 
under different conditions can be compared by using gels grown in those 
conditions.  

A number of bioinformatics tools have been developed for 2D 
electrophoresis analysis [Marengo et al., 2005]. SWISS-2DPAGE can 
locate the proteins on the 2D gel maps from Swiss-Prot 
(http://au.expasy.org/ch2d/). Melanie (http://au.expasy.org/melanie/) can 
analyze, annotate, and query 2D gel samples. Flicker 
(http://open2dprot.sourceforge.net/Flicker/) is an open-source stand-
alone computer program for visually comparing 2D gel images. PDQuest 
(http://www.proteomeworks.bio-rad.com) is a popular commercial 
software package for comparing 2D gel images.  

Fuzzy models have also found their applications in 2D gel analyses. 
As images from a 2D gel are often noisy and reproducibility may be 
poor, Marengo et al. [2003a] developed a fuzzy logic method to map the 
signals corresponding to the presence of proteins on the 2D maps into 
Gaussian membership functions. This approach allows us to assign 
different uncertainties for identified proteins on a 2D gel. To compare 
different 2D gel electrophoresis images, Kaczmarek et al. [2002] 
developed a feature-based matching technique for fuzzy alignment 
between gel spots across images, where the number of features in two gel 
images does not have to be the same. Marengo et al. [2003b] also 
proposed a fuzzy method for the comparison of different 2D maps. This 
approach digitized the 2D image and fuzzified the digital map. Principal 
component analysis and linear discriminant analysis were applied for 
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comparing the 2D maps. This method successfully differentiated 
between 2D gels from healthy humans and those from non-Hodgkin 
lymphomas.  

6.3.2 Protein identification through mass-spec 

After protein separation using 2D electrophoresis or liquid 
chromatographic separation, protein spots are typically identified using 
mass-spec (MS) [Aebersold and Mann, 2003]. The data generated from 
mass spectrometers are often complicated and computational analyses 
are critical in interpreting the data for protein identification [Gras and 
Muller, 2001; Blueggel et al., 2004]. MS gives information about 
molecular weight about fragments of a protein sequence. With genomic 
sequences widely available, the masses of protein fragments can be used 
to identify proteins in a biological sample through searching in a 
database of all possible protein fragments in the species. MS protein 
identification involves protein digestion using an enzyme (trypsin, 
pepsin, glu-C, etc.), followed by peptide mass fingerprinting (PMF) 
[Cottrell, 1994] or tandem mass (a.k.a. MS/MS) spectrometry analysis 
[Yates et al., 1996].  PMF uses intact masses of digested peptides for 
protein identification. The MS/MS method is based on peptide fragments 
produced by collision-induced dissociation. While the MS/MS method is 
more accurate in defining peptides, it is more expensive and time-
consuming than PMF. Many tools have been developed for protein 
identification, and the most popular ones are SEQUEST 
(http://fields.scripps.edu/sequest/) and Mascot 
(http://www.matrixscience.com/).  Both of them rely on the comparison 
between theoretical peptides derived from the database and experimental 
mass spectra.   

An important problem in mass-spec protein identification is to predict 
chemical modifications of a protein (e.g., the number of amino acids 
cleaved, or an amino acid change with more/less atoms). Holmes and 
Giddings [2004] developed a fuzzy approach to address this problem. 
They constructed a Web-based tool PROCLAME 
(http://proclame.unc.edu) using either PMF or MS/MS data. The tool 
explored possible combinations of chemical modifications accounting for 
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the experimental mass with a depth-first tree search using a rule-based 
fuzzy logic engine. Candidates are scored and ranked. Although there 
may not be enough information to define the chemical modifications of a 
protein uniquely, the tool provides a set of candidates with ranking.  

6.4 Application in Drug Design 

An important application of fuzzy set theory and fuzzy logic in 
bioinformatics is drug design. A modern drug design often targets a 
protein or nucleotide (DNA/RNA) in a virus/bacterium to inhibit its 
function so that the virus/bacterium can be killed. Figure 6.1 shows an 
example of a designed drug interacting with a protein (protease) in an 
HIV virus. Since early 1990s, fuzzy set theory and fuzzy logic have been 
widely used in drug development [Hess, 1995; Sproule et al., 2002].  

 

 
 

Figure 6.1 A drug molecule (shown in spheres) interacting with a HIV protein (protease, 
shown in ribbons). 
 

A widely used strategy for drug design is based on the structure of 
potential drug chemicals (ligands) and the targeting protein. A molecule, 
either a ligand or a protein, can be described by its surface, as shown an 
example in Figure 6.2. A ligand and its target protein may form a stable 
complex through molecular interaction. During this event, the structure 
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of either the ligand or the protein, including their surfaces, often changes 
very little. Hence, one can assume a rigid-body interaction and use the 
surface feature of ligands (sometimes together with the target protein) to 
characterize whether a ligand is a good candidate for a target protein. 
There are two major approaches. The first one is to perform an 
experimental screening using a library of ligands on a target protein and 
then identify the common features among the ligands that bind to the 
protein. These features can be used as a basis for computational studies, 
either to search for new ligands or to redesign the ligand for stronger 
interaction.  The second approach is to search for the complementarity 
between a ligand and its target protein in terms of their molecular 
surfaces as a basis for drug design. This approach is referred to as 
docking.  

 
 

Figure 6.2 Molecular surface of a protein (lysozyme). The color indicates the electric 
field on the protein surface. 

 
On the other hand, how to define a surface of a molecule from the 

coordinates for its atoms is somewhat fuzzy [Agishtein, 1992].  The 



Chapter 6: Other Applications 
 

173 

representation of a ligand (pharmacophore model) may have different 
degrees of "fuzziness". Renner and Schneider [2004] described such a 
fuzziness by a number of spheres of Gaussian-distributed feature 
densities. The surfaces of target proteins that can commonly bind a 
specific ligand may have some fuzziness in the binding pocket, 
especially in terms of the hydrogen-bonding pattern across the binding 
interface [Moodie et al., 1996]. Fuzzy approaches are suitable to describe 
and compare molecular structures. Fuzzy logic was employed in the 
analysis of a database of small molecular structures [Cundari and Russo, 
2001]. In particular, a fuzzy inference system was used to describe a 
small molecule’s geometric surface that is essential for biochemical 
reactions, as the requirement for the geometric surface is not crisp. The 
study suggested a complicated interdependence among the constituent 
atoms in order to achieve fuzzy requirements of the geometric surface for 
biochemical reactions. The inference system was used for retrieving 
small molecules with similar structural features. Another method 
simplified flexible 3D chemical descriptions through clustering 
techniques and created "fuzzy" molecular representations called FEPOPS 
(feature point pharmacophores) [Jenkins et al., 2004]. The 
representations were used for flexible 3D similarity search given one or 
more active ligands without a priori knowledge of bioactive features. 
This is similar to fuzzy protein structure comparison as discussed in 
Chapter 4, where a structure-alignment method was developed with a 
cost function containing both fuzzy assignment variables and atomic 
coordinates [Blankenbecler et al., 2003].  

Identifying features in active ligands that commonly interact with a 
target protein is an important subject in drug design.  This is often 
referred to as Quantitative Structure-Activity Relationships (QSAR). One 
can use Comparative Molecular Surface Analysis (CoMSA) with fuzzy 
molecular representations as described in the last paragraph to find 
common surface features among active ligands for a specific target 
protein [reviewed in Polanski and Gieleciak, 2003]. The fuzzy features 
may include topographical properties, the electrostatic potential, the 
hydrophilicity, and the hydrogen bond density on the surface for 
characterization [Exner et al., 2002]. Hirono et al. [1994a, 1994b] 
constructed an expert system for characterizing the pharmacokinetic 
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properties of active ligands using the fuzzy adaptive least-squares 
method [Moriguchi et al., 1990]. Paetz and Schneider [2005] applied a 
neuro-fuzzy method for classification, feature selection, and rule 
generation for charactering common descriptors among active ligands. 
Researchers also used fuzzy clustering techniques for feature selections. 
Lin et al. [2002] applied a fuzzy C-means algorithm to determine a good 
set of features to classify 3D convex hull descriptors computed for active 
HIV-1 protease inhibitors and inactive analogues. With the principal 
component analysis, important descriptors (feature vectors) were 
selected. Holliday et al. [2004] evaluated the use of the fuzzy C-means 
(FCM) clustering method for the grouping of 2D chemical structures. 
They demonstrated that the FCM often obtained better results than the 
conventional K-means method and hierarchical clustering method using 
Ward's distance. Berthold et al. [Berthold et al., 2005; Wiswedel et al., 
2007] developed a clustering algorithm (Neighborgrams) to visualize 
fuzzy cluster candidates, and they applied the method to select drug 
candidates from chemical compounds for treating AIDS. They showed 
that their approach could rediscover active compounds for HIV (e.g., 
Azido Pyrimidines). 

The fuzzy approaches discussed here are applicable not only to 
protein-ligand interaction, but also to RNA-ligand interaction in drug 
design [Renner et al., 2005]. It is also worthwhile mentioning that similar 
fuzzy methods for molecular recognition in drug design have been 
applied to other areas, such as biomolecular recognition in environmental 
research [Exner et al., 2003; Luke, 2003] and structure-camphoraceous 
odor relationships [Kissi et al., 2004]. Uddameri and Kuchanur [2004] 
applied fuzzy regression methodology to study persistent organic 
pollutants. They investigated the sorbate-sorbent interactions using 
imprecise molecular descriptors based on fuzzy QSARs.  

6.5 Discussion and Summary 

Other than applications illustrated above, fuzzy set theory and fuzzy 
logic have been applied in other bioinformatics research areas, especially 
in biomedical literature mining and biomolecular image analysis. 
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Automated mining of the biomedical literature is important for 
retrieving key publication and information about gene function, gene-
disease association, and gene-gene interactions, as it is increasingly 
difficult for researchers to keep current with the literature. A common 
goal in literature mining is to predict the relationship between two terms 
(words), e.g., “allergy” and “protein kinase”. For this purpose, Perez-
Iratxeta et al. [2002] developed a system XplorMed 
(http://www.bork.embl-heidelberg.de/xplormed/) by applying a fuzzy 
binary relation formalism with a standard grammatical tagger. For gene 
function prediction, Perez et al. [2004] developed a Web server 
(http://www.bork.embl.de/kat) based on a model of fuzzy associations to 
derive keywords related to a gene from literature abstracts.  

Fuzzy models have been used in medical image analyses for about 
two decades [see reviews of Bezdek et al., 1997; Toro, 2006]. In recent 
years, researchers started to use fuzzy approaches to study biomolecular 
images. Pascual et al. [2000] combined Kohonen's self-organizing 
feature maps (SOFM) and FCM in the unsupervised classification of 
electron microscopic images of biomolecules. The method was 
demonstrated to be superior to the SOFM alone for large, high-
dimensional and noisy images. Mousavi et al. [2002] developed an 
iterative fuzzy algorithm for image segmentation in chromosome 
classification. Ferrara et al. [2005] developed a fuzzy method for image 
analysis of oligonucleotide microarrays in typing human leukocyte 
antigen. They used fuzzy basis functions to label image spots on 
microarrays. 

The diverse bioinformatics applications discussed in this chapter 
suggest even greater potential for applying fuzzy concepts and methods 
in addressing a broader range of bioinformatics problems. Typically a 
bioinformatics problem can be solved by many methods. In some cases 
other techniques are better in terms of performance for accuracy or 
computational speed, while in others fuzzy set theory and fuzzy logic are 
the most suitable techniques or provide unique solutions that other 
methods cannot offer. 
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Chapter 7 

Summary and Outlook 

In this book, we introduced fundamentals of fuzzy set theory and fuzzy 
logic and their major applications in bioinformatics, including 
similarities in ontologies, protein structure prediction and analyses, 
microarray data analysis, and others. We demonstrated that fuzzy 
concepts and methods fit various bioinformatics problems both for 
representing the underlying biological mechanisms and for applying 
fuzzy methods as techniques for analyses and predictions. Many 
biological properties and concepts are fundamentally fuzzy. Fuzzy 
methods do not require a precise underlying model, which is often 
difficult to obtain in bioinformatics problems. In some of the 
bioinformatics applications introduced in this book, fuzzy methods are 
more suitable than crisp ones. In other cases, both crisp and fuzzy 
approaches can apply. More systematic comparisons using sizable 
benchmarks to compare between crisp and fuzzy methods are needed.  

Although fuzzy set theory and fuzzy logic have been applied in 
bioinformatics, given their potential, we expect to see more and more 
such applications in the future. One example where fuzzy approaches can 
play an important role is to effectively integrate various types of data, 
from sequence, gene expression, protein interaction to phenotypes, each 
being noisy and mono-perspective, to infer biological knowledge. As 
more data are generated and the complexity of the data increases, the 
data-fusion problem brings more attention in the research community. 
There are statistical methods, e.g., meta-analysis, to address this issue. 
However, the underlying statistical models and the dependency among 
different data are often too difficult to handle. This may be a unique 
opportunity for fuzzy set theory and fuzzy logic to lead the related 
developments. 
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Many advantages for fuzzy approaches in bioinformatics have 
been discussed throughout this book. Nevertheless, fuzzy set theory and 
fuzzy logic are not “silver bullets” to solve everything. Like any other 
method, fuzzy models and approaches have their own limitations. When 
we use a fuzzy variable, it will be less accurate by nature than a crisp 
one. When we adopt a fuzzy description instead of a probability model, 
we treat the underlying mechanism more like a black box without 
explicit equations or probability distribution, and thus less detail is 
included. Fuzzy techniques sometimes ignore “high-order effects”. For 
example, in contrast to hidden Markov models, fuzzy approaches 
generally do not consider correlational/transitional effects among 
different states. When applying fuzzy approaches, these limitations 
should also be considered. 

Bioinformatics applications raised new challenges for fuzzy set 
theory. For example, there are usually a large number of free parameters 
in many applications. How to systematically derive suitable parameters 
for computational models in biological systems is non-trivial. For crisp 
methods, this problem has been addressed to certain extent by using 
methods such as orthogonal arrays [Sun et al., 1999]. The problem is not 
well addressed for fuzzy models while fuzzy methods often introduce 
more parameters to describe the fuzziness than crisp methods. Such a 
challenge calls for both theoretical developments in fuzzy set theory and 
novel integration of biological knowledge for solving the problem. 
Another challenge is that biologists often expect more than a fuzzy value 
as the overall assessment. Providing a more quantitative confidence 
assessment for prediction results based on the fuzzy evaluation is often 
important. In particular, instead of providing a fuzzy value ranging from 
0 to 1, which may be hard to interpret, it would be useful to represent the 
value in terms of percentage of accuracy or an expectation value/p-value. 
Fuzzy probability theory could address this issue, but its application in 
bioinformatics has not been reported to our knowledge. Alternatively, in 
a particular bioinformatics application it may be practical through 
benchmarking the relationship between the fuzzy value and prediction 
accuracy, as done in [Bondugula and Xu, 2006].  Another challenge is 
the dimension of many bioinformatics problems, which is much larger 
than what fuzzy set theory typically addressed in the past. Many 
biological data often have thousands of dimensions. Applications of 
fuzzy approaches in these problems may require both more powerful 
computers and new frameworks in fuzzy set theory. Ultimately, while 
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fuzzy set theory helps bioinformatics, biological questions will provide a 
driving force for new developments in fuzzy set theory itself. 
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Appendix I 

Fundamental Biological Concepts 

This Appendix introduces some fundamental biological concepts for 
readers without a biological background. Instead of providing a general 
overview, this introduction is focused only on the biological subjects 
discussed in the book. Our descriptions over-simplify the biological 
complexity. If a reader wishes to gain a more comprehensive 
understanding about basic biology, we recommend reading the reference 
materials described here and in Appendix II. 

AI.1 DNA, RNA and Genome 

AI.1.1 DNA (deoxyribonucleic acid) 

DNA stores genetic information that controls all cellular processes 
through determining synthesis and regulation of proteins. DNA can 
reproduce itself. James Watson and Francis Crick identified its structure 
in 1953. The structure consists of two helical strands intertwined with 
each other to form the well-known double-stranded helix as shown in 
Figure AI.1.   

A DNA sequence contains four types of units called nucleotides, i.e., 
adenine (A), cytosine (C), guanine (G), and thymine (T). Adenine always 
pairs with thymine and cytosine always pairs with guanine across the 
helix. A base pair means that the two nucleotides form strong hydrogen 
bonds, to be linked together. This complementary relationship between 
bases is essential in stabilizing the double helix structure. From a 
computer science point of view, one can imagine that one strand of a 
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DNA helix is a long “string”, with the alphabet A, T, C and G. DNA 
passes hereditary information from one cell to another cell and from one 
generation to the next generation through transferring the coding 
information of the “string”. 

 

 
 

Figure AI.1 DNA structure. The left hand side shows a segment of DNA in the double-
stranded helix structure. The right hand side shows the four building blocks (nucleotides) 
in DNA, where each line represents a chemical bond between two atoms. 
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AI.1.2 RNA (ribonucleic acid)  

RNA has the same nucleotides as DNA except that uracil (U) replaces 
thymine (T).  RNA is typically much shorter than DNA and often forms 
complicated structures with single-stranded nucleotides. There are 
various types of RNAs, including Messenger RNA (mRNA), Transfer 
RNA (tRNA), Ribosomal RNA (rRNA), Non-coding RNA (ncRNA), 
etc. Among them, mRNA acts as intermediate for the information 
transferred from the DNA to protein, which we will discuss in Section 
AI.3.  

AI.1.3 Genome 

The complete set of DNA of an organism is called its genome. All of the 
DNA in a species can be in a single chain or multiple chains, each of 
which is called a chromosome. For example, in humans, the DNA is 
tightly packed into 24 distinct chromosomes. The size of the genome is 
referred in terms of number of base pairs. The smallest genomes are 
viruses, often containing a few hundred thousand base pairs, while the 
largest genome known to date, the trumpet lily, has a genome size of 
about 90 billion base pairs. The size of human genome is about 3 billion 
base pairs. A genome is often called the blueprint of a species, as it 
contains the complete hereditary information of the species. The basic 
physical and functional unit of heredity is a gene, which is a specific 
sequence of nucleotide bases carrying the information required for 
constructing a protein and a non-protein coding product (e.g. rRNA and 
tRNA). The portions that code genes in a genomic sequence are referred 
to coding regions, while other parts of the genome are non-coding 
regions. In a typically genome, coding regions often represent a small 
percentage in a genome. For a human, only about 2% of the genome 
represents coding regions. Predicting the coding regions from a genomic 
sequence is a bioinformatics research problem, known as gene finding. 
 
Readers can find more information about DNA, RNA, and genome in 
[Alberts et al., 1994; Berg et al., 2006]. 
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AI.2 Protein and Its Structure 

Proteins are one of the most important molecules in life. They play a 
variety of roles depending on their types, such as structural proteins, 
catalytic proteins, storage and transport proteins, regulatory proteins, 
immune system proteins, signaling proteins, etc. The number of protein 
types in a living organism often ranges from thousands to tens of 
thousands. For example, humans have about 30,000 protein types.  

The building blocks of protein are amino acids. There are 20 types of 
amino acids, as described in Table AI.1. A protein is a sequence of 
amino acids that are linked by chemical (peptide) bonds to form a poly-
peptide chain, which is referred to as protein’s primary structure. Most 
proteins have several hundred amino acids. Short runs of these amino 
acids form specific configurations called secondary structures (helices, 
strands, sheets, coils, turns and loops). The secondary structure elements 
are packed together into three-dimensional (tertiary) structures. A 
quaternary structure may be formed when several such polypeptide 
chains are arranged in to a stable complex structure. The hierarchy of the 
four protein structural levels is illustrated in Figure AI.2.  

Protein secondary structure is defined by the conformation of protein 
backbone. The backbone of a protein or peptide consists of repeated units 
with the amide nitrogen N(H), the carbon Cα, and the carbonyl carbon 
C(═O). An α-helix is a major secondary structure, which is almost 
always right handed as found in the threads of a standard wood screw. A 
helix is formed when the hydrogen in the N─H of the nth amino acid 
makes a hydrogen bond with oxygen in the C═O of the (n+4)th amino 
acid (see Figure AI.3). This pattern of repeated bonding results in a 
stable α-helix. On average, there are 3.6 amino acids per turn in an α-
helix. Other varieties of helices exist with slightly more and slightly less 
amino acids per turn. 

The second major type of secondary structure is β-strand (see Figure 
AI.3). In a β-strand, usually 5-10 consecutive amino acids are in almost 
fully extended conformation. When more than one β-strand lie adjacent 
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in space, a pleated β-sheet is formed. These are held by the hydrogen 
bonding between C═O groups of one strand and the N─H of the adjacent 
strand. If all the strands in a β-sheet run in the same biochemical 
direction from the start (amino-terminus) to the end (carboxy-terminus) 
of the protein, parallel β-sheets are formed. If alternating strands in the β-
sheet run in opposite directions, anti-parallel sheets are formed. 

 

 
Figure AI.2 Protein structure hierarchy. The illustrated protein is an arsenate reductase 
from the species Archaeoglobus (PDB code 1Y1L).  
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Table AI.1. Twenty naturally occurring amino acids and their properties 
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The core of protein tertiary structure is often formed by α-helices and 
β-sheets. To gain a heuristic understanding of protein tertiary structure, 
we compare three different representations of the same protein structure, 
as shown in Figure AI.4. A protein tertiary structure (including its 
secondary structures) is basically determined by the protein's primary 
sequence. Efforts to predict tertiary structure from the primary sequence 
are known as protein structure prediction, which has been an active 
research area for about three decades. 
 

 
 
Figure AI.3 Protein secondary structures. Each ball represents an atom (light blue for 
carbon, dark blue for nitrogen, and red for oxygen) and each solid represents a chemical 
bond. An α-helix is formed when hydrogen bonds (blue dotted lines) are formed between 
the hydrogen atom of N-H in the nth amino acid and  the oxygen of C=O of the (n+4)th 
amino acid.  The β-sheets are held by the hydrogen bonds between the hydrogen atoms of 
N-H of one strand and the oxygen atoms of C=O of an adjacent strand in space. 
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Readers can find more information about protein and protein structures 
in [Branden and Tooze, 1999; Petsko and Ringe, 2004]. 

 

 
 
Figure AI.4 Representation of tertiary structure for protein lysozyme (PDB code 4LYZ). 
In the ball & stick model, each ball represents an atom (light blue for carbon, dark blue 
for nitrogen, and red for oxygen) and each line represents a chemical bond. In the cartoon 
representation, the purple ribbons represent α-helices and yellow strands show β-sheets. 
In the surface representation, the amino acids are colored by their distances from the 
center of the molecule. 
 
 
AI.3 Central Dogma of Biology  
 
The “central dogma of molecular biology” explains the mechanism by 
which the genetic information is transmitted from DNA to protein, as 
shown in Figure AI.5. The DNA gives rise to messenger RNA (mRNA) 
by a process called “transcription”, where mRNA sequence is the same 
as the DNA sequence except that “T” in DNA is changed to “U” in 
mRNA. The mRNA transmits the information into polypeptide (protein) 
sequences by a process called “translation”. 

During the translation of an mRNA into a protein sequence, a 
mapping scheme exists to synthesize the protein from mRNA. This 
mapping scheme (Table AI.2) explains the relationship between the 
nucleotides in the mRNA and the amino acids in the protein. A group of 



Appendix I: Fundamental Biological Concepts 187 

three consecutive nucleotides is called a codon.  As each position in a 
given codon can be selected from one of the four nucleotides (A,U,G,C), 
there are 43 = 64 possible codons. Sixty one codons encode the 20 
naturally occurring amino acids while the remaining 3 codons (UAA, 
UAG and UGA) are used as “stop” codons to let the translation 
machinery recognize the end of the protein.  The codon “AUG”, while 
coding amino acid methionine, is also often used as the start of a protein. 
 
Readers can find more information about central dogma of molecular 
biology in [Alberts et al., 1994; Lewin, 2003]. 
 

Table AI.2 Mapping scheme between three-letter codons and the twenty amino acids 

2nd position 1st position 
 U C A G 

3rd position 
 

U Phe 
 

Tyr 
 

Cys 
 C 

STOP A 
U 

 
Ser 

 
 Trp G 

U His 
C 
A 

C 

 
 
 

Leu 
 

 
Pro 

 Gln 

 
Arg 

 
G 
U Asn Ser 
C 

 
Ilu 

A A 
Met 

(START) 

 
Thr 

 Lys Arg 
G 

U Asp 
C 
A 

G 

 
Val 

 
Ala 

Glu 

 
Gly 

G 
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Figure AI.5 The central dogma of molecular biology. The hereditary information in the 
DNA is transcribed into mRNA, which in turn is translated into protein. 
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Appendix II 

Online Resources 

There is a tremendous amount of free resources related to this book on 
the Internet. One can easily find much useful information through 
keyword search at a search engine, such as Google. Here, we list and 
briefly describe some of the free online resources. The list given here is 
by no means comprehensive. Rather, we carefully selected some 
informative and helpful links related to the book. Please note that the 
cited links are active at the time of writing this book, but they may not be 
available or their URLs may be changed over time. 

AII.1 Online Resources for Molecular Biology 

The following four sites offer up-to-date information about basic 
molecular biology for beginners. 

* DNA from the Beginning 

This site features a primer of basic biological concepts through 
animation, image gallery, and video interviews. It has three sections, 
“Classical Genetics”, “Molecules of Genetics”, and “Genetic 
Organization and Control”. 
 
Web site: http://www.dnaftb.org/dnaftb/. 
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* MIT Biology Hypertextbook 

This site provides materials for an MIT course "Introductory Biology". 
The materials can be searched with keywords. On-line practice problems 
are also available. 
 
Web site: http://web.mit.edu/esgbio/www/. 

* Wikipedia 

Wikipedia is a free online encyclopedia with basic overviews. Readers 
can find descriptions and explanations on many basic concepts related to 
the book, particularly those in molecular biology, microarray technology, 
and fuzzy logic. 
 
Web site: http://en.wikipedia.org.  

* A Science Primer 

This site gives a basic introduction to many terms related to molecular 
biology, microarray technology, and bioinformatics. 
 
Web site: http://www.ncbi.nlm.nih.gov/About/primer/.  

AII.2 Online Resources for Bioinformatics 

There are thousands of bioinformatics sites that host biomolecular 
databases or prediction servers. Here, we list a few major sites that are 
related to the book. Readers can explore other sites from the 
bioinformatics portals listed in AII.2.5. 
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AII.2.1 Protein structure 

AII.2.1.1 Protein structure database 

* Protein Data Bank 

Protein Data Bank (PDB) is consistent and comprehensive archive of the 
experimentally determined biomolecular structures. Currently, the 
archive contains more than 37,000 molecular structures. The website 
provides or links to a number of tools and resources to search, analyze 
and visualize biological molecules. The website also features an 
animated tutorial illustrating the above mentioned activities.  
 
PDB website: http://www.rcsb.org/pdb.  

AII.2.1.2. protein structure visualization 

* Rasmol 

Rasmol is one of oldest protein structure visualization software packages. 
It is a basic visualization tool with multiple options for rendering and 
coloring the molecules. It is now distributed as an open source program. 
‘Protein Explorer’ is a Rasmol derivative that is more powerful and 
relatively easier to use.  
 
RasMol/Protein Explorer website:  www.umass.edu/microbio/rasmol.  

* VMD 

VMD is a powerful visualization and analysis tool for biological 
molecules like proteins, nucleic acids and lipid assemblies. It features a 
variety of rendering and coloring options. VMD also acts as a graphical 
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interface for molecular dynamic simulations, among other external 
software packages.  
 
VMD website: http://www.ks.uiuc.edu/Research/vmd. 

* DeepView 

DeepView/SwissPDB viewer is an application to analyze several 
proteins at the same time. The application can be used to study amino 
acid mutations, structure alignments, and hydrogen bonding. Within the 
application, it is possible to submit the protein for structure prediction to 
Swiss-Model server.  Many other modeling tools are integrated into the 
application.  
 
DeepView website: http://ca.expasy.org/spdbv.  
 

AII.2.2 Microarray 

AII.2.2.1 Microarray databases 

* Gene Expression Omnibus (GEO) 

GEO is a public repository for gene expression data. It supports retrieval 
and some analyses of gene expression data from any organism.  
 
GEO website: http://www.ncbi.nlm.nih.gov/geo/. 

* Stanford Microarray Database (SMD) 

SMD is a database for microarray gene expression data. It provides 
various basic analysis capacities for the data.  
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SMD website: http://genome-www5.stanford.edu. 
 

AII.2.2.2 Microarray analysis tool 

* Bioconductor 

Bioconductor is an open source and open development software project 
for the analysis of genomic data, especially micorarray data. In 
particular, comprehensive statistical analysis tools are available in the 
Bioconductor package. The development is mainly based on the R 
programming language.  
 
Bioconductor website: http://www.bioconductor.org/. 

* Cluster & TreeView 

Cluster and TreeView form an integrated pair of programs for analyzing 
and visualizing microarray gene expression data. Cluster performs 
clustering analysis using Hierachical Clustering, K-Means Clustering, 
Self Organizing Maps, or PCA. The clustering results can be viewed 
using TreeView. 
 
Cluster & TreeView website: http://rana.lbl.gov/EisenSoftware.htm.  

* geWorkbench 

geWorkbench (genomics Workbench) is a Java-based open-source 
platform for bioinformatics analyses. It has various components and 
plug-ins supporting the visualization and analysis of microarray gene 
expression and sequence data.  
 
geWorkbench website: http://wiki.c2b2.columbia.edu/workbench/.   
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* Engene 

 
Engene is a web-based server for the storage, analysis, and visualization 
of microarray gene expression data. Various clustering algorithms 
including K-means, HAC, fuzzy C-means, kernel C-means, SOMs, PCA, 
etc. are available.  
 
Engene website: http://www.engene.cnb.uam.es.  

AII.2.3 Gene ontology  

* Gene Ontology (GO) Home 

The site describes the results of the Gene Ontology project, which is an 
international collaborative effort to provide a controlled vocabulary to 
describe gene and gene-product attributes in any organism. The site 
provides annotation of biological processes and molecular functions for 
genes in a wide variety of species, as well as various tools for 
computational analyses related to GO. 
 
GO website: http://www.geneontology.org.  

AII.2.4 Online portals for bioinformatics 

* The Bioinformatics Organization 

The site serves the bioinformatics community through news, software 
access (online tools), forums, and mailing list.  
 
Website: http://bioinformatics.org.  
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* Bioinformatics Links Directory 

The directory provides selected links to biomolecular resources, tools 
and databases. It covers broad areas of bioinformatics, including 
sequence comparison, gene expression analysis, model organism 
databases, literature resources, and educational materials. 
 
Website: http://www.bioinformatics.ubc.ca/resources/links_directory/. 

* An Introduction to Bioinformatics Algorithms 

 
This site has rich information about bioinformatics education, including a 
collection of course slides and problem sets, as well as links to online 
teaching materials in bioinformatics. 
 
Website: http://www.bioalgorithms.info/. 
 

AII.3 Online Resources for Fuzzy Set Theory and Fuzzy Logic 

* Fuzzy Logic Tutorial  

This site provides a tutorial for some basic concepts in fuzzy logic, 
including rule matrix, membership function, and fuzzy inference. 
 
Website: http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html. 
 
* Fuzzy Logic Archive 
 
This site gives some introductory materials for fuzzy logic and links to 
other sites related to fuzzy logic. 
 
Website: http://www.austinlinks.com/Fuzzy/. 
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